Your browser doesn't support javascript.
loading
Size-Pore-Dependent Methanol Sequestration from Water-Methanol Mixtures by an Embedded Graphene Slit.
Bellido-Peralta, Roger; Leoni, Fabio; Calero, Carles; Franzese, Giancarlo.
Afiliación
  • Bellido-Peralta R; Secció de Física Estadística i Interdisciplinària, Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
  • Leoni F; Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
  • Calero C; Secció de Física Estadística i Interdisciplinària, Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
  • Franzese G; Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028 Barcelona, Spain.
Molecules ; 28(9)2023 Apr 25.
Article en En | MEDLINE | ID: mdl-37175107
The separation of liquid mixture components is relevant to many applications-ranging from water purification to biofuel production-and is a growing concern related to the UN Sustainable Development Goals (SDGs), such as "Clean water and Sanitation" and "Affordable and clean energy". One promising technique is using graphene slit-pores as filters, or sponges, because the confinement potentially affects the properties of the mixture components in different ways, favoring their separation. However, no systematic study has shown how the size of a pore changes the thermodynamics of the surrounding mixture. Here, we focus on water-methanol mixtures and explore, using Molecular Dynamics simulations, the effects of a graphene pore, with size ranging from 6.5 to 13 Å, for three compositions: pure water, 90%-10%, and 75%-25% water-methanol. We show that tuning the pore size can change the mixture pressure, density and composition in bulk due to the size-dependent methanol sequestration within the pore. Our results can help in optimizing the graphene pore size for filtering applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza