Carbon Condensation via [4 + 2] Cycloaddition of Highly Unsaturated Carbon Chains.
J Phys Chem A
; 127(19): 4277-4290, 2023 May 18.
Article
en En
| MEDLINE
| ID: mdl-37146283
We present computational studies of reaction pathways for alkyne/polyyne dimerization that represent plausible early steps in mechanisms for carbon condensation. A previous computational study of the ring coalescence and annealing model of C60 formation revealed that a 1,4-didehydrobenzocyclobutadiene intermediate (p-benzyne derivative) has little to no barrier to undergoing an unproductive retro-Bergman cyclization, which brings into question the relevance of that reaction pathway. The current study investigates an alternative model, which proceeds through an initial [4 + 2] cycloaddition instead of a [2 + 2] cycloaddition. In this pathway, the problematic intermediate is avoided, with the reaction proceeding via a (potentially) more kinetically stable tetradehydronaphthalene derivative. The computational studies of the [2 + 2] and [4 + 2] model systems, with increasing alkyne substitutions, reveal that the para-benzyne diradical of the [4 + 2] pathway has a significantly greater barrier to ring opening than the analogous intermediates of the [2 + 2] pathway and that alkyne substitution has little effect on this important barrier. These studies employ spin-flip, time-dependent density functional theory (SF-TDDFT) to provide suitable treatment of open-shell diradical intermediates.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Phys Chem A
Asunto de la revista:
QUIMICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos