Your browser doesn't support javascript.
loading
Graphene Nano-Optics in the Terahertz Gap.
Feres, Flávio H; Barcelos, Ingrid D; Cadore, Alisson R; Wehmeier, Lukas; Nörenberg, Tobias; Mayer, Rafael A; Freitas, Raul O; Eng, Lukas M; Kehr, Susanne C; Maia, Francisco C B.
Afiliación
  • Feres FH; "Gleb Wataghin" Institute of Physics, State University of Campinas (UNICAMP), Campinas, Sao Paulo 13083-859, Brazil.
  • Barcelos ID; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil.
  • Cadore AR; Institute of Applied Physics, Technische Universität Dresden, 01062 Dresden, Germany.
  • Wehmeier L; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil.
  • Nörenberg T; Brazilian Nanotechnology National Laboratory LNNano, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil.
  • Mayer RA; Institute of Applied Physics, Technische Universität Dresden, 01062 Dresden, Germany.
  • Freitas RO; National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States of America.
  • Eng LM; Institute of Applied Physics, Technische Universität Dresden, 01062 Dresden, Germany.
  • Kehr SC; Würzburg-Dresden Cluster of Excellence - EXC 2147 (ct.qmat), Technische Universität Dresden, 01062 Dresden, Germany.
  • Maia FCB; "Gleb Wataghin" Institute of Physics, State University of Campinas (UNICAMP), Campinas, Sao Paulo 13083-859, Brazil.
Nano Lett ; 23(9): 3913-3920, 2023 May 10.
Article en En | MEDLINE | ID: mdl-37126430
Graphene nano-optics at terahertz (THz) frequencies (ν) is theoretically anticipated to feature extraordinary effects. However, interrogating such phenomena is nontrivial, since the atomically thin graphene dimensionally mismatches the THz radiation wavelength reaching hundreds of micrometers. Greater challenges happen in the THz gap (0.1-10 THz) wherein light sources are scarce. To surpass these barriers, we use a nanoscope illuminated by a highly brilliant and tunable free-electron laser to image the graphene nano-optical response from 1.5 to 6.0 THz. For ν < 2 THz, we observe a metal-like behavior of graphene, which screens optical fields akin to noble metals, since this excitation range approaches its charge relaxation frequency. At 3.8 THz, plasmonic resonances cause a field-enhancement effect (FEE) that improves the graphene imaging power. Moreover, we show that the metallic behavior and the FEE are tunable upon electrical doping, thus providing further control of these graphene nano-optical properties in the THz gap.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Estados Unidos