Your browser doesn't support javascript.
loading
Cell-type-specific aging clocks to quantify aging and rejuvenation in neurogenic regions of the brain.
Buckley, Matthew T; Sun, Eric D; George, Benson M; Liu, Ling; Schaum, Nicholas; Xu, Lucy; Reyes, Jaime M; Goodell, Margaret A; Weissman, Irving L; Wyss-Coray, Tony; Rando, Thomas A; Brunet, Anne.
Afiliación
  • Buckley MT; Department of Genetics, Stanford University, Stanford, CA, USA.
  • Sun ED; Genetics Graduate Program, Stanford University, Stanford, CA, USA.
  • George BM; Department of Genetics, Stanford University, Stanford, CA, USA.
  • Liu L; Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA.
  • Schaum N; Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA.
  • Xu L; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
  • Reyes JM; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  • Goodell MA; Department of Neurology, UCLA, Los Angeles, CA, USA.
  • Weissman IL; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  • Wyss-Coray T; Department of Genetics, Stanford University, Stanford, CA, USA.
  • Rando TA; Department of Biology, Stanford University, Stanford, CA, USA.
  • Brunet A; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
Nat Aging ; 3(1): 121-137, 2023 01.
Article en En | MEDLINE | ID: mdl-37118510
The diversity of cell types is a challenge for quantifying aging and its reversal. Here we develop 'aging clocks' based on single-cell transcriptomics to characterize cell-type-specific aging and rejuvenation. We generated single-cell transcriptomes from the subventricular zone neurogenic region of 28 mice, tiling ages from young to old. We trained single-cell-based regression models to predict chronological age and biological age (neural stem cell proliferation capacity). These aging clocks are generalizable to independent cohorts of mice, other regions of the brains, and other species. To determine if these aging clocks could quantify transcriptomic rejuvenation, we generated single-cell transcriptomic datasets of neurogenic regions for two interventions-heterochronic parabiosis and exercise. Aging clocks revealed that heterochronic parabiosis and exercise reverse transcriptomic aging in neurogenic regions, but in different ways. This study represents the first development of high-resolution aging clocks from single-cell transcriptomic data and demonstrates their application to quantify transcriptomic rejuvenation.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Rejuvenecimiento / Envejecimiento Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Aging Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Rejuvenecimiento / Envejecimiento Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Aging Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos