Your browser doesn't support javascript.
loading
A combinatorial approach implementing new database structures to facilitate practical data curation management of QTL, association, correlation and heritability data on trait variants.
Hu, Zhi-Liang; Park, Carissa A; Reecy, James M.
Afiliación
  • Hu ZL; Department of Animal Science, Iowa State University, 2255 Kildee Hall, 806 Stange Road, Ames, IA 50011-3150, USA.
  • Park CA; Department of Animal Science, Iowa State University, 2255 Kildee Hall, 806 Stange Road, Ames, IA 50011-3150, USA.
  • Reecy JM; Department of Animal Science, Iowa State University, 2255 Kildee Hall, 806 Stange Road, Ames, IA 50011-3150, USA.
Database (Oxford) ; 20232023 04 21.
Article en En | MEDLINE | ID: mdl-37084387
A precise description of traits is essential in genetics and genomics studies to facilitate comparative genetics and meta-analyses. It is an ongoing challenge in research and production environments to unambiguously and consistently compare traits of interest from data collected under various conditions. Despite previous efforts to standardize trait nomenclature, it remains a challenge to fully and accurately capture trait nomenclature granularity in a way that ensures long-term data sustainability in terms of the data curation processes, data management logistics and the ability to make meaningful comparisons across studies. In the Animal Quantitative Trait Loci Database and the Animal Trait Correlation Database, we have recently introduced a new method to extend livestock trait ontologies by using trait modifiers and qualifiers to define traits that differ slightly in how they are measured, examined or combined with other traits or factors. Here, we describe the implementation of a system in which the extended trait data, with modifiers, are managed at the experiment level as 'trait variants'. This has helped us to streamline the management and curation of such trait information in our database environment. Database URL  https://www.animalgenome.org/PGNET/.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sitios de Carácter Cuantitativo / Manejo de Datos Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: Database (Oxford) Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sitios de Carácter Cuantitativo / Manejo de Datos Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: Database (Oxford) Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido