An adaptive parameter selection strategy based on maximizing the probability of data for robust fluorescence molecular tomography reconstruction.
J Biophotonics
; 16(8): e202300031, 2023 08.
Article
en En
| MEDLINE
| ID: mdl-37074336
To alleviate the ill-posed of the inverse problem in fluorescent molecular tomography (FMT), many regularization methods based on L2 or L1 norm have been proposed. Whereas, the quality of regularization parameters affects the performance of the reconstruction algorithm. Some classical parameter selection strategies usually need initialization of parameter range and high computing costs, which is not universal in the practical application of FMT. In this paper, an universally applicable adaptive parameter selection method based on maximizing the probability of data (MPD) strategy was proposed. This strategy used maximum a posteriori (MAP) estimation and maximum likelihood (ML) estimation to establish a regularization parameters model. The stable optimal regularization parameters can be determined by multiple iterative estimates. Numerical simulations and in vivo experiments show that MPD strategy can obtain stable regularization parameters for both regularization algorithms based on L2 or L1 norm and achieve good reconstruction performance.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Procesamiento de Imagen Asistido por Computador
/
Tomografía
Idioma:
En
Revista:
J Biophotonics
Asunto de la revista:
BIOFISICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Alemania