Data sharing in the context of community-engaged research partnerships.
Soc Sci Med
; 325: 115895, 2023 05.
Article
en En
| MEDLINE
| ID: mdl-37062144
Over the past 20 years, the National Institutes for Health (NIH) has implemented several policies designed to improve sharing of research data, such as the NIH public access policy for publications, NIH genomic data sharing policy, and National Cancer Institute (NCI) Cancer Moonshot public access and data sharing policy. In January 2023, a new NIH data sharing policy has gone into effect, requiring researchers to submit a Data Management and Sharing Plan in proposals for NIH funding (NIH. Supplemental information to the, 2020b; NIH. Final policy for data, 2020a). These policies are based on the idea that sharing data is a key component of the scientific method, as it enables the creation of larger data repositories that can lead to research questions that may not be possible in individual studies (Alter and Gonzalez, 2018; Jwa and Poldrack, 2022), allows enhanced collaboration, and maximizes the federal investment in research. Important questions that we must consider as data sharing is expanded are to whom do benefits of data sharing accrue and to whom do benefits not accrue? In an era of growing efforts to engage diverse communities in research, we must consider the impact of data sharing for all research participants and the communities that they represent. We examine the issue of data sharing through a community-engaged research lens, informed by a long-standing partnership between community-engaged researchers and a key community health organization (Kruse et al., 2022). We contend that without effective community engagement and rich contextual knowledge, biases resulting from data sharing can remain unchecked. We provide several recommendations that would allow better community engagement related to data sharing to ensure both community and researcher understanding of the issues involved and move toward shared benefits. By identifying good models for evaluating the impact of data sharing on communities that contribute data, and then using those models systematically, we will advance the consideration of the community perspective and increase the likelihood of benefits for all.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Genómica
/
Difusión de la Información
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Soc Sci Med
Año:
2023
Tipo del documento:
Article
Pais de publicación:
Reino Unido