Library Screening Reveals Sequence Motifs That Enable ADAR2 Editing at Recalcitrant Sites.
ACS Chem Biol
; 18(10): 2188-2199, 2023 10 20.
Article
en En
| MEDLINE
| ID: mdl-37040436
Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in duplex RNA. The inosine product preferentially base pairs with cytidine resulting in an effective A-to-G edit in RNA. ADAR editing can result in a recoding event alongside other alterations to RNA function. A consequence of ADARs' selective activity on duplex RNA is that guide RNAs (gRNAs) can be designed to target an adenosine of interest and promote a desired recoding event. One of ADAR's main limitations is its preference to edit adenosines with specific 5' and 3' nearest neighbor nucleotides (e.g., 5' U, 3' G). Current rational design approaches are well-suited for this ideal sequence context, but limited when applied to difficult-to-edit sites. Here we describe a strategy for the in vitro evaluation of very large libraries of ADAR substrates (En Masse Evaluation of RNA Guides, EMERGe). EMERGe allows for a comprehensive screening of ADAR substrate RNAs that complements current design approaches. We used this approach to identify sequence motifs for gRNAs that enable editing in otherwise difficult-to-edit target sites. A guide RNA bearing one of these sequence motifs enabled the cellular repair of a premature termination codon arising from mutation of the MECP2 gene associated with Rett Syndrome. EMERGe provides an advancement in screening that not only allows for novel gRNA design, but also furthers our understanding of ADARs' specific RNA-protein interactions.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
ARN
/
Adenosina Desaminasa
Tipo de estudio:
Diagnostic_studies
/
Screening_studies
Idioma:
En
Revista:
ACS Chem Biol
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos