Mechanism of secretion of TcpF by the Vibrio cholerae toxin-coregulated pilus.
Proc Natl Acad Sci U S A
; 120(16): e2212664120, 2023 04 18.
Article
en En
| MEDLINE
| ID: mdl-37040409
Many bacteria possess dynamic filaments called Type IV pili (T4P) that perform diverse functions in colonization and dissemination, including host cell adhesion, DNA uptake, and secretion of protein substrates-exoproteins-from the periplasm to the extracellular space. The Vibrio cholerae toxin-coregulated pilus (TCP) and the enterotoxigenic Escherichia coli CFA/III pilus each mediates export of a single exoprotein, TcpF and CofJ, respectively. Here, we show that the disordered N-terminal segment of mature TcpF is the export signal (ES) recognized by TCP. Deletion of the ES disrupts secretion and causes TcpF to accumulate in the V. cholerae periplasm. The ES alone can mediate export of Neisseria gonorrhoeae FbpA by V. cholerae in a T4P-dependent manner. The ES is specific for its autologous T4P machinery as CofJ bearing the TcpF ES is exported by V. cholerae, whereas TcpF bearing the CofJ ES is not. Specificity is mediated by binding of the ES to TcpB, a minor pilin that primes pilus assembly and forms a trimer at the pilus tip. Finally, the ES is proteolyzed from the mature TcpF protein upon secretion. Together, these results provide a mechanism for delivery of TcpF across the outer membrane and release into the extracellular space.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Vibrio cholerae
/
Fimbrias Bacterianas
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Año:
2023
Tipo del documento:
Article
País de afiliación:
Canadá
Pais de publicación:
Estados Unidos