Your browser doesn't support javascript.
loading
A multi-subgroup predictive model based on clinical parameters and laboratory biomarkers to predict in-hospital outcomes of plasma exchange-centered artificial liver treatment in patients with hepatitis B virus-related acute-on-chronic liver failure.
Liu, Jie; Shi, Xinrong; Xu, Hongmin; Tian, Yaqiong; Ren, Chaoyi; Li, Jianbiao; Shan, Shigang; Liu, Shuye.
Afiliación
  • Liu J; Clinical Laboratory Department, The Third Central Hospital of Tianjin, Tianjin, China.
  • Shi X; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.
  • Xu H; Artificial Cell Engineering Technology Research Center, Tianjin, China.
  • Tian Y; Tianjin Institute of Hepatobiliary Disease, Tianjin, China.
  • Ren C; Clinical Laboratory Department, The Third Central Hospital of Tianjin, Tianjin, China.
  • Li J; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.
  • Shan S; Artificial Cell Engineering Technology Research Center, Tianjin, China.
  • Liu S; Tianjin Institute of Hepatobiliary Disease, Tianjin, China.
Front Cell Infect Microbiol ; 13: 1107351, 2023.
Article en En | MEDLINE | ID: mdl-37026054
Background: Postoperative risk stratification is challenging in patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) who undergo artificial liver treatment. This study characterizes patients' clinical parameters and laboratory biomarkers with different in-hospital outcomes. The purpose was to establish a multi-subgroup combined predictive model and analyze its predictive capability. Methods: We enrolled HBV-ACLF patients who received plasma exchange (PE)-centered artificial liver support system (ALSS) therapy from May 6, 2017, to April 6, 2022. There were 110 patients who died (the death group) and 110 propensity score-matched patients who achieved satisfactory outcomes (the survivor group). We compared baseline, before ALSS, after ALSS, and change ratios of laboratory biomarkers. Outcome prediction models were established by generalized estimating equations (GEE). The discrimination was assessed using receiver operating characteristic analyses. Calibration plots compared the mean predicted probability and the mean observed outcome. Results: We built a multi-subgroup predictive model (at admission; before ALSS; after ALSS; change ratio) to predict in-hospital outcomes of HBV-ACLF patients who received PE-centered ALSS. There were 110 patients with 363 ALSS sessions who survived and 110 who did not, and 363 ALSS sessions were analyzed. The univariate GEE models revealed that several parameters were independent risk factors. Clinical parameters and laboratory biomarkers were entered into the multivariate GEE model. The discriminative power of the multivariate GEE models was excellent, and calibration showed better agreement between the predicted and observed probabilities than the univariate models. Conclusions: The multi-subgroup combined predictive model generated accurate prognostic information for patients undergoing HBV-ACLF patients who received PE-centered ALSS.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hígado Artificial / Insuficiencia Hepática Crónica Agudizada / Hepatitis B Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Front Cell Infect Microbiol Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hígado Artificial / Insuficiencia Hepática Crónica Agudizada / Hepatitis B Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Front Cell Infect Microbiol Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza