Your browser doesn't support javascript.
loading
Systematic review finds "spin" practices and poor reporting standards in studies on machine learning-based prediction models.
Andaur Navarro, Constanza L; Damen, Johanna A A; Takada, Toshihiko; Nijman, Steven W J; Dhiman, Paula; Ma, Jie; Collins, Gary S; Bajpai, Ram; Riley, Richard D; Moons, Karel G M; Hooft, Lotty.
Afiliación
  • Andaur Navarro CL; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. Electronic address: c.l.andaurnavarro@umcutrecht.nl.
  • Damen JAA; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
  • Takada T; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
  • Nijman SWJ; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
  • Dhiman P; Center for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
  • Ma J; Center for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK.
  • Collins GS; Center for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
  • Bajpai R; Centre for Prognosis Research, School of Medicine, Keele University, Keele, UK.
  • Riley RD; Centre for Prognosis Research, School of Medicine, Keele University, Keele, UK.
  • Moons KGM; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
  • Hooft L; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
J Clin Epidemiol ; 158: 99-110, 2023 06.
Article en En | MEDLINE | ID: mdl-37024020
OBJECTIVES: We evaluated the presence and frequency of spin practices and poor reporting standards in studies that developed and/or validated clinical prediction models using supervised machine learning techniques. STUDY DESIGN AND SETTING: We systematically searched PubMed from 01/2018 to 12/2019 to identify diagnostic and prognostic prediction model studies using supervised machine learning. No restrictions were placed on data source, outcome, or clinical specialty. RESULTS: We included 152 studies: 38% reported diagnostic models and 62% prognostic models. When reported, discrimination was described without precision estimates in 53/71 abstracts (74.6% [95% CI 63.4-83.3]) and 53/81 main texts (65.4% [95% CI 54.6-74.9]). Of the 21 abstracts that recommended the model to be used in daily practice, 20 (95.2% [95% CI 77.3-99.8]) lacked any external validation of the developed models. Likewise, 74/133 (55.6% [95% CI 47.2-63.8]) studies made recommendations for clinical use in their main text without any external validation. Reporting guidelines were cited in 13/152 (8.6% [95% CI 5.1-14.1]) studies. CONCLUSION: Spin practices and poor reporting standards are also present in studies on prediction models using machine learning techniques. A tailored framework for the identification of spin will enhance the sound reporting of prediction model studies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje Automático Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies / Systematic_reviews Límite: Humans Idioma: En Revista: J Clin Epidemiol Asunto de la revista: EPIDEMIOLOGIA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje Automático Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies / Systematic_reviews Límite: Humans Idioma: En Revista: J Clin Epidemiol Asunto de la revista: EPIDEMIOLOGIA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos