Your browser doesn't support javascript.
loading
Controlling barrier height and spectral responsivity of p-i-n based GeSn photodetectors via arsenic incorporation.
Nawwar, Mohamed A; Abo Ghazala, Magdy S; Sharaf El-Deen, Lobna M; Anis, Badawi; El-Shaer, Abdelhamid; Elseman, Ahmed Mourtada; Rashad, Mohamed M; Kashyout, Abd El-Hady B.
Afiliación
  • Nawwar MA; Physics Department, Faculty of Science, Menoufia University Shebin El-Koom Menoufia 32511 Egypt mohamed.nawwar@science.menofia.edu.eg.
  • Abo Ghazala MS; Physics Department, Faculty of Science, Menoufia University Shebin El-Koom Menoufia 32511 Egypt mohamed.nawwar@science.menofia.edu.eg.
  • Sharaf El-Deen LM; Physics Department, Faculty of Science, Menoufia University Shebin El-Koom Menoufia 32511 Egypt mohamed.nawwar@science.menofia.edu.eg.
  • Anis B; Spectroscopy Department, Physics Research Institute, National Research Centre 33 El Bohouth St., Dokki 12622 Giza Egypt.
  • El-Shaer A; Physics Department, Faculty of Science, Kafrelsheikh University KafrelSheikh 33516 Egypt.
  • Elseman AM; Electronic Materials Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City) New Borg El-Arab City Alexandria 21943 Egypt.
  • Rashad MM; Electronic Materials Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City) New Borg El-Arab City Alexandria 21943 Egypt.
  • Kashyout AEB; Electronic & Magnetic Materials Department, Advanced Materials Institute, Central Metallurgical Research & Development Institute (CMRDI) 11421 Helwan-Cairo Egypt akashyout@srtacity.sci.eg.
RSC Adv ; 13(14): 9154-9167, 2023 Mar 20.
Article en En | MEDLINE | ID: mdl-36950705
GeSn compounds have made many interesting contributions in photodetectors (PDs) over the last ten years, as they have a detection limit in the NIR and mid-IR region. Sn incorporation in Ge alters the cut off wavelength. In the present article, p-i-n structures based on GeSn junctions were fabricated to serve as PDs. Arsine (As) is incorporated to develop n-GeSn compounds via a metal induced crystallization (MIC) process followed by i-GeSn on p-Si wafers. The impact of As and Sn doping on the strain characteristics of GeSn has been studied with high resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy analyses. The direct transitions and tuning of their band energies have been investigated using diffuse reflectance UV-vis spectroscopy and photoluminescence (PL). The barrier height and spectral responsivity have been controlled with incorporation of As. Variation of As incorporation into GeSn Compounds shifted the Raman peak and hence affected the strain in the Ge network. UV-vis spectroscopy showed that the direct transition energies are lowered as the Ge-As bonding increases as illustrated in Raman spectroscopy investigations. PL and UV-vis spectroscopy of annealed heterostructures at 500 °C showed that there are many transition peaks from the UV to the NIR region as result of oxygen vacancies in the Ge network. The calculated diode parameters showed that As incorporation leads to an increase of the height barrier and thus dark current. Spectral response measurements show that the prepared heterojunctions have spectral responses in near UV and NIR regions that gives them opportunities in UV and NIR photodetection-applications.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: RSC Adv Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: RSC Adv Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido