Your browser doesn't support javascript.
loading
Prioritizing prognostic-associated subpopulations and individualized recurrence risk signatures from single-cell transcriptomes of colorectal cancer.
Tong, Mengsha; Lin, Yuxiang; Yang, Wenxian; Song, Jinsheng; Zhang, Zheyang; Xie, Jiajing; Tian, Jingyi; Luo, Shijie; Liang, Chenyu; Huang, Jialiang; Yu, Rongshan.
Afiliación
  • Tong M; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
  • Lin Y; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China.
  • Yang W; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China.
  • Song J; Aginome Scientific, Xiamen, Fujian 316005, China.
  • Zhang Z; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
  • Xie J; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
  • Tian J; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China.
  • Luo S; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China.
  • Liang C; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
  • Huang J; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
  • Yu R; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
Brief Bioinform ; 24(3)2023 05 19.
Article en En | MEDLINE | ID: mdl-36946415
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies. There are few recurrence risk signatures for CRC patients. Single-cell RNA-sequencing (scRNA-seq) provides a high-resolution platform for prognostic signature detection. However, scRNA-seq is not practical in large cohorts due to its high cost and most single-cell experiments lack clinical phenotype information. Few studies have been reported to use external bulk transcriptome with survival time to guide the detection of key cell subtypes in scRNA-seq data. We proposed scRankXMBD, a computational framework to prioritize prognostic-associated cell subpopulations based on within-cell relative expression orderings of gene pairs from single-cell transcriptomes. scRankXMBD achieves higher precision and concordance compared with five existing methods. Moreover, we developed single-cell gene pair signatures to predict recurrence risk for patients individually. Our work facilitates the application of the rank-based method in scRNA-seq data for prognostic biomarker discovery and precision oncology. scRankXMBD is available at https://github.com/xmuyulab/scRank-XMBD. (XMBD:Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University, China.).
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Colorrectales / Transcriptoma Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Colorrectales / Transcriptoma Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido