Your browser doesn't support javascript.
loading
Approaching optimal entangling collective measurements on quantum computing platforms.
Conlon, Lorcán O; Vogl, Tobias; Marciniak, Christian D; Pogorelov, Ivan; Yung, Simon K; Eilenberger, Falk; Berry, Dominic W; Santana, Fabiana S; Blatt, Rainer; Monz, Thomas; Lam, Ping Koy; Assad, Syed M.
Afiliación
  • Conlon LO; Centre for Quantum Computation and Communication Technology, Department of Quantum Science, Australian National University, Canberra, Australian Capital Territory Australia.
  • Vogl T; Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller University of Jena, Jena, Germany.
  • Marciniak CD; Cavendish Laboratory, University of Cambridge, Cambridge, UK.
  • Pogorelov I; Institute for Experimental Physics, Innsbruck, Austria.
  • Yung SK; Institute for Experimental Physics, Innsbruck, Austria.
  • Eilenberger F; Centre for Quantum Computation and Communication Technology, Department of Quantum Science, Australian National University, Canberra, Australian Capital Territory Australia.
  • Berry DW; Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller University of Jena, Jena, Germany.
  • Santana FS; Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Jena, Germany.
  • Blatt R; Max Planck School of Photonics, Jena, Germany.
  • Monz T; School of Mathematical and Physical Sciences, Macquarie University, Sydney, New South Wales Australia.
  • Lam PK; Amazon Web Services, Canberra, Australian Capital Territory Australia.
  • Assad SM; Institute for Experimental Physics, Innsbruck, Austria.
Nat Phys ; 19(3): 351-357, 2023.
Article en En | MEDLINE | ID: mdl-36942094
Entanglement is a fundamental feature of quantum mechanics and holds great promise for enhancing metrology and communications. Much of the focus of quantum metrology so far has been on generating highly entangled quantum states that offer better sensitivity, per resource, than what can be achieved classically. However, to reach the ultimate limits in multi-parameter quantum metrology and quantum information processing tasks, collective measurements, which generate entanglement between multiple copies of the quantum state, are necessary. Here, we experimentally demonstrate theoretically optimal single- and two-copy collective measurements for simultaneously estimating two non-commuting qubit rotations. This allows us to implement quantum-enhanced sensing, for which the metrological gain persists for high levels of decoherence, and to draw fundamental insights about the interpretation of the uncertainty principle. We implement our optimal measurements on superconducting, trapped-ion and photonic systems, providing an indication of how future quantum-enhanced sensing networks may look.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Phys Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Phys Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido