Your browser doesn't support javascript.
loading
Light plays a critical role in the accumulation of chlorogenic acid in Lonicera macranthoides Hand.-Mazz.
Chen, Yanchao; Xu, Nan; Du, Lihua; Zhang, Jinhao; Chen, Rong; Zhu, Qianfeng; Li, Waichin; Wu, Chuan; Peng, Guoping; Rao, Liqun; Wang, Qiming.
Afiliación
  • Chen Y; College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China.
  • Xu N; College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China.
  • Du L; College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China.
  • Zhang J; College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China.
  • Chen R; College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China.
  • Zhu Q; College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China.
  • Li W; Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, PR China.
  • Wu C; School of Metallurgy and Environment, Central South University, Changsha, PR China.
  • Peng G; College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China. Electronic address: pgp
  • Rao L; College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China. Electronic address: rao
  • Wang Q; College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China. Electronic address: wqm
Plant Physiol Biochem ; 196: 793-806, 2023 Mar.
Article en En | MEDLINE | ID: mdl-36848865
Light has important effects on plant metabolism. However, the relationship between the chlorogenic acid (CGA) content and light in plants remains unclear. Here, we investigated the effects of shading treatment on gene expression and CGA content in Lonicera macranthoides Hand.-Mazz. (LM), a widely used medicinal plant. A total of 1891 differentially expressed genes (DEGs) were obtained in flower buds and 819 in leaves in response to light in shading treatment compared to the control sample by RNA-Seq. After shading treatment, the content of CGA in LM leaves decreased significantly by 1.78-fold, the carotenoid content increased, and the soluble sugar and starch contents significantly decreased. WGCNA and the expression of related genes verified by qRT‒PCR revealed that CGA synthesis pathway enzyme genes form a co-expression network with genes for carbohydrate synthesis, photosynthesis, light signalling elements, and transcription factor genes (TFs) that affect the accumulation of CGA. Through a virus-induced gene silencing (VIGS) system and CGA assay in Nicotiana benthamiana (NB), we determined that downregulation of NbHY5 expression decreased the CGA content in NB leaves. In this study, we found that light provides energy and material for the accumulation of CGA in LM, and light affects the expression of CGA accumulation-related genes. Our results show that different light intensities have multiple effects on leaves and flower buds in LM and are able to coregulate LmHY5 expression and CGA synthesis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plantas Medicinales / Lonicera Idioma: En Revista: Plant Physiol Biochem Asunto de la revista: BIOQUIMICA / BOTANICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plantas Medicinales / Lonicera Idioma: En Revista: Plant Physiol Biochem Asunto de la revista: BIOQUIMICA / BOTANICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Francia