Your browser doesn't support javascript.
loading
ASR1 and ASR2, Two Closely Related ABA-Induced Serine-Rich Transcription Repressors, Function Redundantly to Regulate ABA Responses in Arabidopsis.
Hussain, Hadia; Cheng, Yuxin; Wang, Yating; Yuan, Yuan; Li, Yingying; Tian, Hainan; Hussain, Saddam; Chen, Siyu; Lin, Rao; Wang, Tianya; Wang, Shucai.
Afiliación
  • Hussain H; Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China.
  • Cheng Y; Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China.
  • Wang Y; Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China.
  • Yuan Y; Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China.
  • Adnan; Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China.
  • Li Y; Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China.
  • Tian H; Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China.
  • Hussain S; Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China.
  • Chen S; Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China.
  • Lin R; Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China.
  • Wang T; Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China.
  • Wang S; Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China.
Plants (Basel) ; 12(4)2023 Feb 14.
Article en En | MEDLINE | ID: mdl-36840200
The plant hormone abscisic acid (ABA) is able to regulate the expression of ABA-responsive genes via signaling transduction, and thus plays an important role in regulating plant responses to abiotic stresses. Hence, characterization of unknown ABA response genes may enable us to identify novel regulators of ABA and abiotic stress responses. By using RT-PCR analysis, we found that the expression levels of ABA-induced Serine-rich Repressor 1 (ASR1)and ASR2, two closely related unknown function genes, were increased in response to ABA treatment. Amino acid sequence analyses show that ASR1 contains an L×L×L motif and both ASR1 and ASR2 are enriched in serine. Transfection assays in Arabidopsis leaf protoplasts show that ASR1 and ASR2 were predominantly localized in the nucleus and were able to repress the expression of the reporter gene. The roles of ASRs in regulating ABA responses were examined by generating transgenic Arabidopsis plants over-expressing ASR1 and ASR2, respectively, and CRISPR/Cas9 gene-edited single and double mutants for ASR1 and ASR2. In both the seed germination and cotyledon greening assays, ABA sensitivity remained largely unchanged in the over-expression transgenic plants and the single mutants of ASR1 and ASR2, but greatly increased ABA sensitivity was observed in the asr1 asr2 double mutants. In root elongation assays, however, decreased ABA sensitivity was observed in the 35S:ASR1 and 35S:ASR2 transgenic plants, whereas increased ABA sensitivity was observed in the asr1 and asr2 single mutants, and ABA sensitivity was further increased in the asr1 asr2 double mutants. Transcriptome analysis show that the differentially expressed genes (DEGs) down-regulated in the 35S:ASR1 transgenic plant seedlings, but up-regulated in the asr1 asr2 double mutant seedlings were highly enriched in processes including responses to plant hormones and stress stimuli. Taken together, our results show that ASR1 and ASR2 are closely related ABA response genes, ASR1 and ASR2 are serine-rich novel transcription repressors, and they negatively regulate ABA responses in Arabidopsis in a redundant manner.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Plants (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Plants (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza