Your browser doesn't support javascript.
loading
Digital Platform for Automatic Qualitative and Quantitative Reading of a Cryptococcal Antigen Point-of-Care Assay Leveraging Smartphones and Artificial Intelligence.
Bermejo-Peláez, David; Medina, Narda; Álamo, Elisa; Soto-Debran, Juan Carlos; Bonilla, Oscar; Luengo-Oroz, Miguel; Rodriguez-Tudela, Juan Luis; Alastruey-Izquierdo, Ana.
Afiliación
  • Bermejo-Peláez D; Spotlab, 28040 Madrid, Spain.
  • Medina N; Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain.
  • Álamo E; Asociación de Salud Integral, Guatemala City 01001, Guatemala.
  • Soto-Debran JC; Spotlab, 28040 Madrid, Spain.
  • Bonilla O; Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain.
  • Luengo-Oroz M; Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain.
  • Rodriguez-Tudela JL; Clínica Familiar "Luis Ángel García", Hospital General San Juan de Dios, Guatemala City 01001, Guatemala.
  • Alastruey-Izquierdo A; Spotlab, 28040 Madrid, Spain.
J Fungi (Basel) ; 9(2)2023 Feb 07.
Article en En | MEDLINE | ID: mdl-36836331
Cryptococcosis is a fungal infection that causes serious illness, particularly in immunocompromised individuals such as people living with HIV. Point of care tests (POCT) can help identify and diagnose patients with several advantages including rapid results and ease of use. The cryptococcal antigen (CrAg) lateral flow assay (LFA) has demonstrated excellent performance in diagnosing cryptococcosis, and it is particularly useful in resource-limited settings where laboratory-based tests may not be readily available. The use of artificial intelligence (AI) for the interpretation of rapid diagnostic tests can improve the accuracy and speed of test results, as well as reduce the cost and workload of healthcare professionals, reducing subjectivity associated with its interpretation. In this work, we analyze a smartphone-based digital system assisted by AI to automatically interpret CrAg LFA as well as to estimate the antigen concentration in the strip. The system showed excellent performance for predicting LFA qualitative interpretation with an area under the receiver operating characteristic curve of 0.997. On the other hand, its potential to predict antigen concentration based solely on a photograph of the LFA has also been demonstrated, finding a strong correlation between band intensity and antigen concentration, with a Pearson correlation coefficient of 0.953. The system, which is connected to a cloud web platform, allows for case identification, quality control, and real-time monitoring.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Qualitative_research Idioma: En Revista: J Fungi (Basel) Año: 2023 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Qualitative_research Idioma: En Revista: J Fungi (Basel) Año: 2023 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza