FUNDC1 interacts with GPx4 to govern hepatic ferroptosis and fibrotic injury through a mitophagy-dependent manner.
J Adv Res
; 55: 45-60, 2024 Jan.
Article
en En
| MEDLINE
| ID: mdl-36828120
INTRODUCTION: Liver fibrosis is a life-threatening pathological anomaly which usually evolves into advanced liver cirrhosis and hepatocellular carcinoma although limited therapeutic option is readily available. FUN14 domain containing 1 (FUNDC1) is a mitophagy receptor with little information in liver fibrosis. OBJECTIVE: This study was designed to examine the role for FUNDC1 in carbon tetrachloride (CCl4)-induced liver injury. METHODS: GEO database analysis and subsequent validation of biological processes including western blot, immunofluorescence, and co-immunoprecipitation were applied to clarify the regulatory role of FUNDC1 on mitophagy and ferroptosis. RESULTS: Our data revealed elevated FUNDC1 levels in liver tissues of patients with liver fibrotic injury and CCl4-challenged mice. FUNDC1 deletion protected against CCl4-induced hepatic anomalies in mice. Moreover, FUNDC1 deletion ameliorated CCl4-induced ferroptosis in vivo and in vitro. Mechanically, FUNDC1 interacted with glutathione peroxidase (GPx4), a selenoenzyme to neutralize lipid hydroperoxides and ferroptosis, via its 96-133 amino acid domain to facilitate GPx4 recruitment into mitochondria from cytoplasm. GPx4 entered mitochondria through mitochondrial protein import system-the translocase of outer membrane/translocase of inner membrane (TOM/TIM) complex, prior to degradation of GPx4 mainly through mitophagy along with ROS-induced damaged mitochondria, resulting in hepatocyte ferroptosis. CONCLUSION: Taken together, our data favored that FUNDC1 promoted hepatocyte injury through GPx4 binding to facilitate its mitochondrial translocation through TOM/TIM complex, where GPx4 was degraded by mitophagy to trigger ferroptosis. Targeting FUNDC1 may be a promising therapeutic approach for liver fibrosis.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Ferroptosis
/
Neoplasias Hepáticas
Límite:
Animals
/
Humans
Idioma:
En
Revista:
J Adv Res
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Egipto