Your browser doesn't support javascript.
loading
A cross entropy test allows quantitative statistical comparison of t-SNE and UMAP representations.
Roca, Carlos P; Burton, Oliver T; Neumann, Julika; Tareen, Samar; Whyte, Carly E; Gergelits, Vaclav; Veiga, Rafael V; Humblet-Baron, Stéphanie; Liston, Adrian.
Afiliación
  • Roca CP; Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
  • Burton OT; Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
  • Neumann J; VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.
  • Tareen S; KU Leuven - University of Leuven, Department of Microbiology and Immunology, 3000 Leuven, Belgium.
  • Whyte CE; Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
  • Gergelits V; Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
  • Veiga RV; Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
  • Humblet-Baron S; Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
  • Liston A; VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.
Cell Rep Methods ; 3(1): 100390, 2023 01 23.
Article en En | MEDLINE | ID: mdl-36814837
The advent of high-dimensional single-cell data has necessitated the development of dimensionality-reduction tools. t-Distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) are the two most frequently used approaches, allowing clear visualization of complex single-cell datasets. Despite the need for quantitative comparison, t-SNE and UMAP have largely remained visualization tools due to the lack of robust statistical approaches. Here, we have derived a statistical test for evaluating the difference between dimensionality-reduced datasets using the Kolmogorov-Smirnov test on the distributions of cross entropy of single cells within each dataset. As the approach uses the inter-relationship of single cells for comparison, the resulting statistic is robust and capable of identifying true biological variation. Further, the test provides a valid distance between single-cell datasets, allowing the organization of multiple samples into a dendrogram for quantitative comparison of complex datasets. These results demonstrate the largely untapped potential of dimensionality-reduction tools for biomedical data analysis beyond visualization.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos Idioma: En Revista: Cell Rep Methods Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos Idioma: En Revista: Cell Rep Methods Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos