N-Coordinated Cu-Ni Dual-Single-Atom Catalyst for Highly Selective Electrocatalytic Reduction of Nitrate to Ammonia.
Small
; 19(20): e2207695, 2023 May.
Article
en En
| MEDLINE
| ID: mdl-36793161
As a traditional method of ammonia (NH3 ) synthesis, Haber-Bosch method expends a vast amount of energy. An alternative route for NH3 synthesis is proposed from nitrate (NO3 - ) via electrocatalysis. However, the structure-activity relationship remains challenging and requires in-depth research both experimentally and theoretically. Here an N-coordinated Cu-Ni dual-single-atom catalyst anchored in N-doped carbon (Cu/Ni-NC) is reported, which has competitive activity with a maximal NH3 Faradaic efficiency of 97.28%. Detailed characterizations demonstrate that the high activity of Cu/Ni-NC mainly comes from the contribution of Cu-Ni dual active sites. That is, (1) the electron transfer (Ni â Cu) reveals the strong electron interaction of Cu-Ni dual-single-atom; (2) the strong hybridizations of Cu 3d-and Ni 3d-O 2p orbitals of NO3 - can accelerate electron transfer from Cu-Ni dual-site to NO3 - ; (3) Cu/Ni-NC can effectively decrease the rate-limiting step barriers, suppress N-N coupling for N2 O and N2 formation and hydrogen production.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Small
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2023
Tipo del documento:
Article
Pais de publicación:
Alemania