Your browser doesn't support javascript.
loading
Designing Interfacial Reactions for Nanometer-Scale Surface Patterning of PDMS with Controlled Elastic Modulus.
Williams, Laura O; Nava, Emmanuel K; Shi, Anni; Roberts, Tyler J; Davis, Chelsea S; Claridge, Shelley A.
Afiliación
  • Williams LO; Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
  • Nava EK; Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
  • Shi A; Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
  • Roberts TJ; Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
  • Davis CS; School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
  • Claridge SA; Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
ACS Appl Mater Interfaces ; 15(8): 11360-11368, 2023 Mar 01.
Article en En | MEDLINE | ID: mdl-36787222
Control over the surface chemistry of elastomers such as polydimethylsiloxane (PDMS) is important for many applications. However, achieving nanostructured chemical control on amorphous material interfaces below the length scale of substrate heterogeneity is not straightforward, and can be particularly difficult to decouple from changes in network structure that are required for certain applications (e.g., variation of elastic modulus for cell culture). We have recently reported a new method for precisely structured surface functionalization of PDMS and other soft materials, which displays high densities of ligands directly on the material surface, maximizing steric accessibility. Here, we systematically examine structural factors in the PDMS components (e.g., base and cross-linker structures) that impact efficiency of the interfacial reaction that leads to surface functionalization. Applying this understanding, we demonstrate routes for generating equivalent nanometer-scale functional patterns on PDMS with elastic moduli from 0.013 to 1.4 MPa, establishing a foundation for use in applications such as cell culture.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos