Your browser doesn't support javascript.
loading
Recognizability bias in citizen science photographs.
Koch, Wouter; Hogeweg, Laurens; Nilsen, Erlend B; O'Hara, Robert B; Finstad, Anders G.
Afiliación
  • Koch W; Department of Natural History, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
  • Hogeweg L; Norwegian Biodiversity Information Centre, Havnegata 9, 7010 Trondheim, Norway.
  • Nilsen EB; Intel Benelux, High Tech Campus 83, 5656 AE Eindhoven, The Netherlands.
  • O'Hara RB; Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands.
  • Finstad AG; Norwegian Institute for Nature Research, Postboks 5685 Torgarden, 7485 Trondheim, Norway.
R Soc Open Sci ; 10(2): 221063, 2023 Feb.
Article en En | MEDLINE | ID: mdl-36756065
Citizen science and automated collection methods increasingly depend on image recognition to provide the amounts of observational data research and management needs. Recognition models, meanwhile, also require large amounts of data from these sources, creating a feedback loop between the methods and tools. Species that are harder to recognize, both for humans and machine learning algorithms, are likely to be under-reported, and thus be less prevalent in the training data. As a result, the feedback loop may hamper training mostly for species that already pose the greatest challenge. In this study, we trained recognition models for various taxa, and found evidence for a 'recognizability bias', where species that are more readily identified by humans and recognition models alike are more prevalent in the available image data. This pattern is present across multiple taxa, and does not appear to relate to differences in picture quality, biological traits or data collection metrics other than recognizability. This has implications for the expected performance of future models trained with more data, including such challenging species.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: R Soc Open Sci Año: 2023 Tipo del documento: Article País de afiliación: Noruega Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: R Soc Open Sci Año: 2023 Tipo del documento: Article País de afiliación: Noruega Pais de publicación: Reino Unido