Your browser doesn't support javascript.
loading
Longitudinal gut mycobiota changes in Japanese infants during first three years of life.
Mishima, Riko; Tanaka, Masaru; Momoda, Rie; Sanefuji, Masafumi; Morokuma, Seiichi; Ogawa, Masanobu; Kato, Kiyoko; Nakayama, Jiro.
Afiliación
  • Mishima R; Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395, Japan.
  • Tanaka M; Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395, Japan.
  • Momoda R; Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395, Japan.
  • Sanefuji M; Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga-shi, Saga 849-8501, Japan; Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan.
  • Morokuma S; Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan.
  • Ogawa M; Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan.
  • Kato K; Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan.
  • Nakayama J; Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395, Japan. Electronic address: nakayama@agr.kyushu-u.ac.jp.
J Biosci Bioeng ; 135(4): 266-273, 2023 Apr.
Article en En | MEDLINE | ID: mdl-36740519
Although fungi can have a large impact on host health through the stimulation of the immune system and toxin production, few studies have investigated the gut mycobiota during infancy, a period during which sensitivity to internal and external stimuli is high. To capture the trend in fungal colonization during infancy, we evaluated the gut mycobiota of ten Japanese infants during the first 3 years of life. Infants had two major phyla, Ascomycota (68.9%) and Basidiomycota (29.6%), and the most abundant genus was Saccharomyces (26.8%), followed by Malassezia (18.5%), Candida (12.3%), Meyerozyma (8.5%), and Penicillium (8.3%). Alpha diversity analysis revealed a significant decrease in fungal richness and evenness with age, suggesting adaptive selection of the colonizing species in the gut environment. Beta diversity analysis divided infant mycobiota into age-related clusters and showed discrete separation before and after weaning, suggesting shift in microenvironment via weaning. In the initial stage, a variety of fungal species that likely originated from an environment, such as Malassezia spp., was highly colonized and were replaced by yeasts, such as Saccharomyces, after weaning. Further studies are needed to shed light on how the passage of the series of fungal colonizations in infancy affects the development of the host immune system and the other homeostasis involved in health later in life.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ascomicetos / Basidiomycota / Microbioma Gastrointestinal Límite: Child, preschool / Humans / Infant Idioma: En Revista: J Biosci Bioeng Asunto de la revista: ENGENHARIA BIOMEDICA / MICROBIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ascomicetos / Basidiomycota / Microbioma Gastrointestinal Límite: Child, preschool / Humans / Infant Idioma: En Revista: J Biosci Bioeng Asunto de la revista: ENGENHARIA BIOMEDICA / MICROBIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Japón