Heat capacity of cytisine - the drug for smoking cessation.
Eur J Pharm Sci
; 183: 106397, 2023 Apr 01.
Article
en En
| MEDLINE
| ID: mdl-36736465
The characterization of cytisine (CYT) and its blends with poly(lactic acid) was performed using thermal analysis, elemental analysis, infrared spectroscopy, and powder X-ray diffractometry. The heat capacities, total enthalpy, and phase transitions of CYT were established from 1.8 to 448.15 K (-271.35 - 175 °C) by advanced thermal analysis. Data were obtained using a Quantum Design Physical Property Measurement System (PPMS) and a differential scanning calorimetry (DSC). The low-temperature heat capacity of the crystalline CYT in the range of 1.8 to 300 K (-271.35 - 26.86 °C) was measured by PPMS and fitted to a theoretical model in the low temperature region below 11 K (-262.15 °C), to orthogonal polynomials in the middle range 5 K < T < 60 K (-268.15 °C < t < -213.15 °C) and to the Debye and Einstein functions in the high range of temperature above 60 K (-213.15 °C). The liquid heat capacity was calculated based on the approximated linear regression data above the molten state of the experimental heat capacity of CYT obtained by the standard DSC measurements, and it was expressed as Cpliquid = 0.0838T + 346.78 J·K-1·mol-1. The calculated heat capacity in the solid state was extended to a higher temperature and was used, together with liquid heat capacity, as the reference baselines for the advanced thermal analysis of CYT. The PPMS and DSC/TMDSC methods are complementary methods for thermal analysis of cytisine. The PPMS method allowed determination of the equilibrium heat capacity in the solid state, which together with the equilibrium heat capacity in the liquid state allowed to analyze of the experimental apparent heat capacity of cytisine obtained based on DSC. The melting temperature and the total heat of fusion of crystalline material were established as 431.8 K (158.65 °C) and 26.5 kJ·mol-1, respectively. The solid and liquid heat capacities and transition parameters of CYT were applied to calculate total enthalpies for fully amorphous and crystalline states. Analyses of DSC and X-ray confirmed the presence of the solid-solid transition linking with not so far described a polymorphism phenomenon of CYT. Based on the thermogravimetric analysis the temperature of degradation of CYT was determined as 460.5 K (187.35 °C). Also, a preliminary thermal analysis of the blends of cytisine and poly(lactic acid) as a new candidate for drug delivery system was presented.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Cese del Hábito de Fumar
/
Calor
Idioma:
En
Revista:
Eur J Pharm Sci
Asunto de la revista:
FARMACIA
/
FARMACOLOGIA
/
QUIMICA
Año:
2023
Tipo del documento:
Article
Pais de publicación:
Países Bajos