Your browser doesn't support javascript.
loading
Genome-Wide RNA Secondary Structure Prediction.
Kawaguchi, Risa Karakida; Kiryu, Hisanori.
Afiliación
  • Kawaguchi RK; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. rkawaguc@cshl.edu.
  • Kiryu H; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
Methods Mol Biol ; 2586: 35-48, 2023.
Article en En | MEDLINE | ID: mdl-36705897
The information of RNA secondary structure has been widely applied to the inference of RNA function. However, a classical prediction method is not feasible to long RNAs such as mRNA due to the problems of computational time and numerical errors. To overcome those problems, sliding window methods have been applied while their results are not directly comparable to global RNA structure prediction. In this chapter, we introduce ParasoR, a method designed for parallel computation of genome-wide RNA secondary structures. To enable genome-wide prediction, ParasoR distributes dynamic programming (DP) matrices required for structure prediction to multiple computational nodes. Using the database of not the original DP variable but the ratio of variables, ParasoR can locally compute the structure scores such as stem probability or accessibility on demand. A comprehensive analysis of local secondary structures by ParasoR is expected to be a promising way to detect the statistical constraints on long RNAs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / ARN Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Methods Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / ARN Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Methods Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos