Your browser doesn't support javascript.
loading
Structure-Based Optimization of 2,4,5-Trisubstituted Pyrimidines as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: Exploiting the Tolerant Regions of the Non-Nucleoside Reverse Transcriptase Inhibitors' Binding Pocket.
Zhao, Fabao; Zhang, Heng; Xie, Minghui; Meng, Bairu; Liu, Na; Dun, Caiyun; Qin, Yanyang; Gao, Shenghua; De Clercq, Erik; Pannecouque, Christophe; Tang, Ya-Jie; Zhan, Peng; Liu, Xinyong; Kang, Dongwei.
Afiliación
  • Zhao F; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China.
  • Zhang H; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China.
  • Xie M; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China.
  • Meng B; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China.
  • Liu N; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China.
  • Dun C; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China.
  • Qin Y; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China.
  • Gao S; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China.
  • De Clercq E; Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), Leuven B-3000, Belgium.
  • Pannecouque C; Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), Leuven B-3000, Belgium.
  • Tang YJ; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
  • Zhan P; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China.
  • Liu X; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, Jinan 250012 Shandong, PR China.
  • Kang D; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China.
J Med Chem ; 66(3): 2102-2115, 2023 02 09.
Article en En | MEDLINE | ID: mdl-36700940
Although non-nucleoside reverse transcriptase inhibitors (NNRTIs) exhibit potent anti-HIV-1 activity and play an important role in the active antiretroviral therapy of AIDS, the emergence of drug-resistant strains has seriously reduced their clinical efficacy. Here, we report a series of 2,4,5-trisubstituted pyrimidines as potent HIV-1 NNRTIs by exploiting the tolerant regions of the NNRTI binding pocket. Compounds 16b and 16c were demonstrated to have excellent activity (EC50 = 3.14-22.1 nM) against wild-type and a panel of mutant HIV-1 strains, being much superior to that of etravirine (EC50 = 3.53-52.2 nM). Molecular modeling studies were performed to illustrate the detailed interactions between RT and 16b, which shed light on the improvement of the drug resistance profiles. Moreover, 16b possessed favorable pharmacokinetic (T1/2 = 1.33 h, F = 31.8%) and safety profiles (LD50 > 2000 mg/kg), making it a promising anti-HIV-1 drug candidate for further development.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: VIH-1 / Fármacos Anti-VIH Idioma: En Revista: J Med Chem Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: VIH-1 / Fármacos Anti-VIH Idioma: En Revista: J Med Chem Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos