Your browser doesn't support javascript.
loading
Oxygen micro-nanobubbles for mitigating eutrophication induced sediment pollution in freshwater bodies.
Ali, Jafar; Yang, Yuesuo; Pan, Gang.
Afiliación
  • Ali J; Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China. Electronic address: jafaraliqau@gmail.com.
  • Yang Y; Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China. Electronic address: yangyuesuo@jlu.edu.cn.
  • Pan G; Centre of Integrated Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell, NG25 0QF, United Kingdom; Jiangsu Jiuguan Institute of Environment and Resources, Yixing, China. Electronic address: gang.pan@ntu.ac.uk.
J Environ Manage ; 331: 117281, 2023 Apr 01.
Article en En | MEDLINE | ID: mdl-36682273
Sediment hypoxia is a growing problem and has negative ecological impacts on the aquatic ecosystem. Hypoxia can disturb the biodiversity and biogeochemical cycles of both phosphorus (P) and nitrogen (N) in water columns and sediments. Anthropogenic eutrophication and internal nutrient release from lakebed sediment accelerate hypoxia to form a dead zone. Thus, sediment hypoxia mitigation is necessary for ecological restoration and sustainable development. Conventional aeration practices to control sediment hypoxia, are not effective due to high cost, sediment disturbance and less sustainability. Owing to high solubility and stability, micro-nanobubbles (MNBs) offer several advantages over conventional water and wastewater treatment practices. Clay loaded oxygen micro-nanobubbles (OMNBs) can be delivered into deep water sediment by gravity and settling. Nanobubble technology provides a promising route for cost-effective oxygen delivery in large natural water systems. OMNBs also have the immense potential to manipulate biochemical pathways and microbial processes for remediating sediment pollution in natural waters. This review article aims to analyze recent trends employing OMNBs loaded materials to mitigate sediment hypoxia and subsequent pollution. The first part of the review highlights various minerals/materials used for the delivery of OMNBs into benthic sediments of freshwater bodies. Release of OMNBs at hypoxic sediment water interphase (SWI) can provide significant dissolved oxygen (DO) to remediate hypoxia induced sediment pollution Second part of the manuscript unveils the impacts of OMNBs on sediment pollutants (e.g., methylmercury, arsenic, and greenhouse gases) remediation and microbial processes for improved biogeochemical cycles. The review article will facilitate environmental engineers and ecologists to control sediment pollution along with ecological restoration.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxígeno / Contaminantes Químicos del Agua Límite: Humans Idioma: En Revista: J Environ Manage Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxígeno / Contaminantes Químicos del Agua Límite: Humans Idioma: En Revista: J Environ Manage Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido