Your browser doesn't support javascript.
loading
Discovery of New Triterpenoids Extracted from Camellia oleifera Seed Cake and the Molecular Mechanism Underlying Their Antitumor Activity.
Wu, Zelong; Tan, Xiaofeng; Zhou, Junqin; Yuan, Jun; Yang, Guliang; Li, Ze; Long, Hongxu; Yi, Yuhang; Lv, Chenghao; Zeng, Chaoxi; Qin, Si.
Afiliación
  • Wu Z; The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
  • Tan X; School of Economics and Management, Hunan Open University, Changsha 410004, China.
  • Zhou J; The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
  • Yuan J; Key Laboratory of Non-Wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
  • Yang G; The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
  • Li Z; The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
  • Long H; Key Laboratory of Non-Wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
  • Yi Y; National Engineering Laboratory for Rice and Byproducts Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha 410004, China.
  • Lv C; The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
  • Zeng C; Key Laboratory of Non-Wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
  • Qin S; The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
Antioxidants (Basel) ; 12(1)2022 Dec 21.
Article en En | MEDLINE | ID: mdl-36670869
Theasaponin derivatives, which are reported to exert antitumor activity, have been widely reported to exist in edible plants, including in the seed cake of Camellia oleifera (C.), which is extensively grown in south of China. The purpose of this study was to isolate new theasaponin derivatives from C. seed cake and explore their potential antitumor activity and their underlying molecular mechanism. In the present study, we first isolated and identified four theasaponin derivatives (compounds 1, 2, 3, and 4) from the total aglycone extract of the seed cake of Camellia oleifera by utilizing a combination of pre-acid-hydrolysis treatment and activity-guided isolation. Among them, compound 1 (C1) and compound 4 (C4) are newly discovered theasaponins that have not been reported before. The structures of these two new compounds were characterized based on comprehensive 1D and 2D NMR spectroscopy and high-resolution mass spectrometry, as well as data reported in the literature. Secondly, the cytotoxicity and antitumor property of the above four purified compounds were evaluated in selected typical tumor cell lines, Huh-7, HepG2, Hela, A549, and SGC7901, and the results showed that the ED50 value of C4 ranges from 1.5 to 11.3 µM, which is comparable to that of cisplatinum (CDDP) in these five cell lines, indicating that C4 has the most powerful antitumor activity among them. Finally, a preliminary mechanistic investigation was performed to uncover the molecular mechanism underlying the antitumor property of C4, and the results suggested that C4 may trigger apoptosis through the Bcl-2/Caspase-3 and JAK2/STAT3 pathways, and stimulate cell proliferation via the NF-κB/iNOS/COX-2 pathway. Moreover, it was surprising to find that C4 can inhibit the Nrf2/HO-1 pathway, which indicates that C4 has the potency to overcome the resistance to cancer drugs. Therefore, C1 and C4 are two newly identified theasaponin derivatives with antitumor activity from the seed cake of Camellia oleifera, and C4 is a promising antitumor candidate not only for its powerful antitumor activity, but also for its ability to function as an Nrf2 inhibitor to enhance the anticancer drug sensitivity.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Antioxidants (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Antioxidants (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza