Your browser doesn't support javascript.
loading
Exosomal miR-27b-3p secreted by visceral adipocytes contributes to endothelial inflammation and atherogenesis.
Tang, Yan; Yang, Li-Jie; Liu, Hao; Song, Yan-Jue; Yang, Qi-Qi; Liu, Yang; Qian, Shu-Wen; Tang, Qi-Qun.
Afiliación
  • Tang Y; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
  • Yang LJ; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
  • Liu H; Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University of Medicine College, Shanghai 200032, China.
  • Song YJ; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
  • Yang QQ; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
  • Liu Y; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
  • Qian SW; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
  • Tang QQ; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China. Electronic address: qqtang@
Cell Rep ; 42(1): 111948, 2023 01 31.
Article en En | MEDLINE | ID: mdl-36640325
Obesity, particularly increased visceral fat, positively correlates with various metabolic challenges, including atherosclerosis, but the mechanism is not fully understood. The aim of this study is to determine the role of visceral-fat-derived exosomes (Exo) in endothelial cells and atherosclerosis. We show that obesity changes the miRNA profile of visceral adipose exosomes in mice. Importantly, exosomal miR-27b-3p efficiently enters into the vascular endothelial cells and activates the NF-κB pathway by downregulating PPARα. Mechanistically, miR-27b-3p binds directly to the CDS region of PPARα mRNA, thereby promoting mRNA degradation and suppressing translation. In ApoE-deficient mice, administration of miR-27b-3p mimic increases inflammation and atherogenesis, while overexpression of PPARα protects against atherosclerosis. Thus, obesity-induced exosomal miR-27b-3p promotes endothelial inflammation and facilitates atherogenesis by PPARα suppression. We reveal an exosomal pathway by which obesity aggravates atherosclerosis and proposed therapeutic strategies for atherosclerosis in people with obesity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: MicroARNs / Aterosclerosis / Exosomas Límite: Animals Idioma: En Revista: Cell Rep Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: MicroARNs / Aterosclerosis / Exosomas Límite: Animals Idioma: En Revista: Cell Rep Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos