Your browser doesn't support javascript.
loading
Deciphering the Reactive Pathways of Competitive Reactions inside Carbon Nanotubes.
Marforio, Tainah Dorina; Tomasini, Michele; Bottoni, Andrea; Zerbetto, Francesco; Mattioli, Edoardo Jun; Calvaresi, Matteo.
Afiliación
  • Marforio TD; Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
  • Tomasini M; Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126 Bologna, Italy.
  • Bottoni A; Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
  • Zerbetto F; Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
  • Mattioli EJ; Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
  • Calvaresi M; Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
Nanomaterials (Basel) ; 13(1)2022 Dec 20.
Article en En | MEDLINE | ID: mdl-36615918
Nanoscale control of chemical reactivity, manipulation of reaction pathways, and ultimately driving the outcome of chemical reactions are quickly becoming reality. A variety of tools are concurring to establish such capability. The confinement of guest molecules inside nanoreactors, such as the hollow nanostructures of carbon nanotubes (CNTs), is a straightforward and highly fascinating approach. It mechanically hinders some molecular movements but also decreases the free energy of translation of the system with respect to that of a macroscopic solution. Here, we examined, at the quantum mechanics/molecular mechanics (QM/MM) level, the effect of confinement inside CNTs on nucleophilic substitution (SN2) and elimination (syn-E2 and anti-E2) using as a model system the reaction between ethyl chloride and chloride. Our results show that the three reaction mechanisms are kinetically and thermodynamically affected by the CNT host. The size of the nanoreactor, i.e., the CNT diameter, represents the key factor to control the energy profiles of the reactions. A careful analysis of the interactions between the CNTs and the reactive system allowed us to identify the driving force of the catalytic process. The electrostatic term controls the reaction kinetics in the SN2 and syn/anti-E2 reactions. The van der Waals interactions play an important role in the stabilization of the product of the elimination process.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nanomaterials (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nanomaterials (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Suiza