Your browser doesn't support javascript.
loading
Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis.
Mosquera-Orgueira, Adrián; Pérez-Encinas, Manuel; Hernández-Sánchez, Alberto; González-Martínez, Teresa; Arellano-Rodrigo, Eduardo; Martínez-Elicegui, Javier; Villaverde-Ramiro, Ángela; Raya, José-María; Ayala, Rosa; Ferrer-Marín, Francisca; Fox, María-Laura; Velez, Patricia; Mora, Elvira; Xicoy, Blanca; Mata-Vázquez, María-Isabel; García-Fortes, María; Angona, Anna; Cuevas, Beatriz; Senín, María-Alicia; Ramírez-Payer, Angel; Ramírez, María-José; Pérez-López, Raúl; González de Villambrosía, Sonia; Martínez-Valverde, Clara; Gómez-Casares, María-Teresa; García-Hernández, Carmen; Gasior, Mercedes; Bellosillo, Beatriz; Steegmann, Juan-Luis; Álvarez-Larrán, Alberto; Hernández-Rivas, Jesús María; Hernández-Boluda, Juan Carlos.
Afiliación
  • Mosquera-Orgueira A; Hospital Clínico Universitario, Santiago de Compostela, Spain.
  • Pérez-Encinas M; Hospital Clínico Universitario, Santiago de Compostela, Spain.
  • Hernández-Sánchez A; Hospital Clínico, Salamanca, Spain.
  • González-Martínez T; Hospital Clínico, Salamanca, Spain.
  • Arellano-Rodrigo E; Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
  • Martínez-Elicegui J; Hospital Clínico, Salamanca, Spain.
  • Villaverde-Ramiro Á; Hospital Clínico, Salamanca, Spain.
  • Raya JM; Hospital Universitario de Canarias, Tenerife, Spain.
  • Ayala R; Hospital Universitario 12 de Octubre, Madrid, Spain.
  • Ferrer-Marín F; Hospital Morales Meseguer, Universidad Católica San Antonio de Murcia, Centro de Investigación Biomédica en Red de Enfermedades Raras, Murcia, Spain.
  • Fox ML; Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain.
  • Velez P; Hospital del Mar, Barcelona, Spain.
  • Mora E; Hospital Universitario La Fe, Valencia, Spain.
  • Xicoy B; Hospital Germans Trias i Pujol, Institut Català d'Oncologia, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain.
  • Mata-Vázquez MI; Hospital Costa del Sol, Marbella, Spain.
  • García-Fortes M; Hospital Virgen de la Victoria, Málaga, Spain.
  • Angona A; Hospital Josep Trueta, Institut Catalá d'Oncologia, Girona, Spain.
  • Cuevas B; Hospital Universitario de Burgos, Burgos, Spain.
  • Senín MA; Institut Catalá d'Oncologia, L'Hospitalet de Llobregat, Spain.
  • Ramírez-Payer A; Hospital Universitario Central de Asturias, Oviedo, Spain.
  • Ramírez MJ; Hospital General, Jerez de la Frontera, Spain.
  • Pérez-López R; Hospital Virgen de la Arrixaca, Murcia, Spain.
  • González de Villambrosía S; Hospital Marqués de Valdecilla, Santander, Spain.
  • Martínez-Valverde C; Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
  • Gómez-Casares MT; Hospital Dr Negrín, Las Palmas de Gran Canaria, Spain.
  • García-Hernández C; Hospital General, Alicante, Spain.
  • Gasior M; Hospital La Paz, Madrid, Spain.
  • Bellosillo B; Hospital del Mar, Barcelona, Spain.
  • Steegmann JL; Hospital de La Princesa, Madrid, Spain.
  • Álvarez-Larrán A; Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
  • Hernández-Rivas JM; Hospital Clínico, Salamanca, Spain.
  • Hernández-Boluda JC; Hospital Clínico Universitario-INCLIVA, Valencia, Spain.
Hemasphere ; 7(1): e818, 2023 Jan.
Article en En | MEDLINE | ID: mdl-36570691
Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) with heterogeneous clinical course. Allogeneic hematopoietic cell transplantation remains the only curative therapy, but its morbidity and mortality require careful candidate selection. Therefore, accurate disease risk prognostication is critical for treatment decision-making. We obtained registry data from patients diagnosed with MF in 60 Spanish institutions (N = 1386). These were randomly divided into a training set (80%) and a test set (20%). A machine learning (ML) technique (random forest) was used to model overall survival (OS) and leukemia-free survival (LFS) in the training set, and the results were validated in the test set. We derived the AIPSS-MF (Artificial Intelligence Prognostic Scoring System for Myelofibrosis) model, which was based on 8 clinical variables at diagnosis and achieved high accuracy in predicting OS (training set c-index, 0.750; test set c-index, 0.744) and LFS (training set c-index, 0.697; test set c-index, 0.703). No improvement was obtained with the inclusion of MPN driver mutations in the model. We were unable to adequately assess the potential benefit of including adverse cytogenetics or high-risk mutations due to the lack of these data in many patients. AIPSS-MF was superior to the IPSS regardless of MF subtype and age range and outperformed the MYSEC-PM in patients with secondary MF. In conclusion, we have developed a prediction model based exclusively on clinical variables that provides individualized prognostic estimates in patients with primary and secondary MF. The use of AIPSS-MF in combination with predictive models that incorporate genetic information may improve disease risk stratification.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Hemasphere Año: 2023 Tipo del documento: Article País de afiliación: España Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Hemasphere Año: 2023 Tipo del documento: Article País de afiliación: España Pais de publicación: Estados Unidos