A novel vascular health index: Using data analytics and population health to facilitate mechanistic modeling of microvascular status.
Front Physiol
; 13: 1071813, 2022.
Article
en En
| MEDLINE
| ID: mdl-36561210
The study of vascular function across conditions has been an intensive area of investigation for many years. While these efforts have revealed many factors contributing to vascular health, challenges remain for integrating results across research groups, animal models, and experimental conditions to understand integrated vascular function. As such, the insights attained in clinical/population research from linking datasets, have not been fully realized in the basic sciences, thus frustrating advanced analytics and complex modeling. To achieve comparable advances, we must address the conceptual challenge of defining/measuring integrated vascular function and the technical challenge of combining data across conditions, models, and groups. Here, we describe an approach to establish and validate a composite metric of vascular function by comparing parameters of vascular function in metabolic disease (the obese Zucker rat) to the same parameters in age-matched, "healthy" conditions, resulting in a common outcome measure which we term the vascular health index (VHI). VHI allows for the integration of datasets, thus expanding sample size and permitting advanced modeling to gain insight into the development of peripheral and cerebral vascular dysfunction. Markers of vascular reactivity, vascular wall mechanics, and microvascular network density are integrated in the VHI. We provide a detailed presentation of the development of the VHI and provide multiple measures to assess face, content, criterion, and discriminant validity of the metric. Our results demonstrate how the VHI captures multiple indices of dysfunction in the skeletal muscle and cerebral vasculature with metabolic disease and provide context for an integrated understanding of vascular health under challenged conditions.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Front Physiol
Año:
2022
Tipo del documento:
Article
País de afiliación:
Canadá
Pais de publicación:
Suiza