Measurements of ion-electron energy-transfer cross section in high-energy-density plasmas.
Phys Rev E
; 106(5): L053201, 2022 Nov.
Article
en En
| MEDLINE
| ID: mdl-36559377
We report on measurements of the ion-electron energy-transfer cross section utilizing low-velocity ion stopping in high-energy-density plasmas at the OMEGA laser facility. These measurements utilize a technique that leverages the close relationship between low-velocity ion stopping and ion-electron equilibration. Shock-driven implosions of capsules filled with D^{3}He gas doped with a trace amount of argon are used to generate densities and temperatures in ranges from 1×10^{23} to 2×10^{24} cm^{-3} and from 1.4 to 2.5 keV, respectively. The energy loss of 1-MeV DD tritons and 3.7-MeV D^{3}He alphas that have velocities lower than the average velocity of the thermal electrons is measured. The energy loss of these ions is used to determine the ion-electron energy-transfer cross section, which is found to be in excellent agreement with quantum-mechanical calculations in the first Born approximation. This result provides an experimental constraint on ion-electron energy transfer in high-energy-density plasmas, which impacts the modeling of alpha heating in inertial confinement fusion implosions, magnetic-field advection in stellar atmospheres, and energy balance in supernova shocks.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev E
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos