Your browser doesn't support javascript.
loading
Intracellular Dynamics of Extracellular Vesicles by Segmented Trajectory Analysis.
Rautaniemi, Kaisa; John, Thomas; Richter, Maximilian; Huck, Benedikt C; Zini, Jacopo; Loretz, Brigitta; Lehr, Claus-Michael; Vuorimaa-Laukkanen, Elina; Lisitsyna, Ekaterina; Laaksonen, Timo.
Afiliación
  • Rautaniemi K; Chemistry and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720Tampere, Finland.
  • John T; Experimental Physics, Saarland University, 66123Saarbrücken, Germany.
  • Richter M; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8 1, 66123Saarbrücken, Germany.
  • Huck BC; Department of Pharmacy, Saarland University, 66123Saarbrücken, Germany.
  • Zini J; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8 1, 66123Saarbrücken, Germany.
  • Loretz B; Department of Pharmacy, Saarland University, 66123Saarbrücken, Germany.
  • Lehr CM; Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790Helsinki, Finland.
  • Vuorimaa-Laukkanen E; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8 1, 66123Saarbrücken, Germany.
  • Lisitsyna E; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8 1, 66123Saarbrücken, Germany.
  • Laaksonen T; Department of Pharmacy, Saarland University, 66123Saarbrücken, Germany.
Anal Chem ; 94(51): 17770-17778, 2022 12 27.
Article en En | MEDLINE | ID: mdl-36512439
The analysis of nanoparticle (NP) dynamics in live cell studies by video tracking provides detailed information on their interactions and trafficking in the cells. Although the video analysis is not yet routinely used in NP studies, the equipment suitable for the experiments is already available in most laboratories. Here, we compare trajectory patterns, diffusion coefficients, and particle velocities of NPs in A549 cells with a rather simple experimental setup consisting of a fluorescence microscope and openly available trajectory analysis software. The studied NPs include commercial fluorescent polymeric particles and two subpopulations of PC-3 cell-derived extracellular vesicles (EVs). As bioderived natural nanoparticles, the fluorescence intensities of the EVs limited the recording speed. Therefore, we studied the effect of the recording frame rate and analysis parameters to the trajectory results with bright fluorescent commercial NPs. We show that the trajectory classification and the apparent particle velocities are affected by the recording frame rate, while the diffusion constants stay comparable. The NP trajectory patterns were similar for all NP types and resembled intracellular vesicular transport. Interestingly, the EV movements were faster than the commercial NPs, which contrasts with their physical sizes and may indicate a greater role of the motor proteins in their intracellular transports.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Vesículas Extracelulares Límite: Humans Idioma: En Revista: Anal Chem Año: 2022 Tipo del documento: Article País de afiliación: Finlandia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Vesículas Extracelulares Límite: Humans Idioma: En Revista: Anal Chem Año: 2022 Tipo del documento: Article País de afiliación: Finlandia Pais de publicación: Estados Unidos