Your browser doesn't support javascript.
loading
Real-Time Video Synopsis via Dynamic and Adaptive Online Tube Resizing.
Liao, Xiaoxin; Liu, Song; Cai, Zemin.
Afiliación
  • Liao X; Department of Electronic Engineering, Shantou University, Shantou 515063, China.
  • Liu S; Key Lab of Digital Signal and Image Processing of Guangdong Province, Shantou 515063, China.
  • Cai Z; Department of Electronic Engineering, Shantou University, Shantou 515063, China.
Sensors (Basel) ; 22(23)2022 Nov 22.
Article en En | MEDLINE | ID: mdl-36501746
Nowadays, with the increased numbers of video cameras, the amount of recorded video is growing. Efficient video browsing and retrieval are critical issues when considering the amount of raw video data to be condensed. Activity-based video synopsis is a popular approach to solving the video condensation problem. However, conventional synopsis methods always consists of complicated and pairwise energy terms that involve a time-consuming optimization problem. In this paper, we propose a simple online video synopsis framework in which the number of collisions of objects is classified first. Different optimization strategies are applied according to different collision situations to maintain a balance among the computational cost, condensation ratio, and collision cost. Secondly, tube-resizing coefficients that are dynamic in different frames are adaptively assigned to a newly generated tube. Therefore, a suitable mapping result can be obtained in order to represent the proper size of the activity in each frame of the synopsis video. The maximum number of activities can be displayed in one frame with minimal collisions. Finally, in order to remove motion anti-facts and improve the visual quality of the condensed video, a smooth term is introduced to constrain the resizing coefficients. Experimental results on extensive videos validate the efficiency of the proposed method.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Interpretación de Imagen Asistida por Computador Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Interpretación de Imagen Asistida por Computador Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza