Your browser doesn't support javascript.
loading
Development of iron-vitamin multilayer encapsulates using 3 fluid nozzle spray drying.
Nimbkar, Shubham; Leena, M Maria; Moses, J A; Anandharamakrishnan, C.
Afiliación
  • Nimbkar S; Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management -Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur 613005, Tamil Nadu, India.
  • Leena MM; Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management -Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur 613005, Tamil Nadu, India.
  • Moses JA; Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management -Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur 613005, Tamil Nadu, India. Electronic address: moses.ja@iifpt.edu.in.
  • Anandharamakrishnan C; Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management -Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur 613005, Tamil Nadu, India. Electronic address: anandhramakrishnan@iifpt.edu.in.
Food Chem ; 406: 135035, 2023 Apr 16.
Article en En | MEDLINE | ID: mdl-36481513
Considering the growing concern of iron and folic acid deficiency, encapsulation of these nutrients and fortification into foods is emerging as an effective counter-strategy. The present work focuses on a scalable approach for the production of iron, ascorbic acid, and folic acid core-shell encapsulates using novel 3-fluid nozzle (3FN) spray drying with whey protein as core and either pectin or hydroxypropyl methylcellulose (HPMC) as shell polymers. The effect of shell formation was observed by comparing core-shell encapsulates with conventional 2-fluid nozzle (2FN) encapsulates. Also, the effect of pH of whey protein on the color of encapsulates is noteworthy; reducing the pH to 4.0 significantly improved the lightness value (52.91 ± 0.13) when compared with the encapsulates with native pH (38.91 ± 0.58). Furthermore, sample with pectin as shell polymer exhibited fair flowability with lowest values of Hausner ratio (1.25 ± 0.04) and Carr's index (20.06 ± 2.71) and highest encapsulation efficiency for folic acid (86.07 ± 5.24%). Whereas, encapsulates having HPMC as shell polymer showed highest lightness value (60.80 ± 0.32) and highest encapsulation efficiency for iron (87.28 ± 4.15%). The formation of core-shell structure was confirmed by evaluation of the surface composition which showed reduced amine bonds and increased aliphatic and carbonyl bonds in the encapsulates prepared by 3FN spray drying. The encapsulates prepared without adjusting whey protein pH showed the least release (∼51 % in 24 h) and bioaccessibility (∼56%) of iron indicating the iron-whey protein complex formation. Based on appearance, smooth surface morphology, flowability, and release behavior, a combination of whey protein and pectin is recommended for co-encapsulation of iron, folic acid and ascorbic acid.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vitaminas / Secado por Pulverización Idioma: En Revista: Food Chem Año: 2023 Tipo del documento: Article País de afiliación: India Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vitaminas / Secado por Pulverización Idioma: En Revista: Food Chem Año: 2023 Tipo del documento: Article País de afiliación: India Pais de publicación: Reino Unido