Infrared spectroscopy is suitable for objective assessment of articular cartilage health.
Osteoarthr Cartil Open
; 4(2): 100250, 2022 Jun.
Article
en En
| MEDLINE
| ID: mdl-36475284
Objective: To evaluate the feasibility of Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy to detect cartilage degradation due to osteoarthritis and to validate the methodology with osteochondral human cartilage samples for future development towards clinical use. Design: Cylindrical (d â= â4 âmm) osteochondral samples (n â= â349) were prepared from nine human cadavers and measured with FTIR-ATR spectroscopy. Afterwards, the samples were assessed with Osteoarthritis Research Society International (OARSI) osteoarthritis cartilage histopathology assessment system and divided into two groups: 1) healthy (OARSI 0-2) and 2) osteoarthritic (OARSI 2.5-6). The classification was done with partial least squares discriminant analysis model utilizing cross-model validation. Receiver operating characteristics curve analysis was performed and the area under curve (AUC) was calculated. Results: For all samples combined, classification accuracy was 73% with AUC of 0.79. Femoral samples had accuracy of 74% and AUC of 0.77, while tibial samples had accuracy of 66%, and AUC of 0.74. Patellar samples had accuracy of 84% and AUC of 0.91. Conclusions: The results indicate that FTIR-ATR spectroscopy can differentiate between healthy and osteoarthritic femoral, tibial and patellar human tissue. If combined with a fiber optic probe, FTIR-ATR spectroscopy could provide additional objective intraoperative information during arthroscopic surgeries, which could improve clinical outcomes.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Osteoarthr Cartil Open
Año:
2022
Tipo del documento:
Article
País de afiliación:
Finlandia
Pais de publicación:
Reino Unido