Your browser doesn't support javascript.
loading
Design rules for 2D field mediated assembly of different shaped colloids into diverse microstructures.
Hendley, Rachel S; Zhang, Lechuan; Bevan, Michael A.
Afiliación
  • Hendley RS; Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA. mabevan@jhu.edu.
  • Zhang L; Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA. mabevan@jhu.edu.
  • Bevan MA; Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA. mabevan@jhu.edu.
Soft Matter ; 18(48): 9273-9282, 2022 Dec 14.
Article en En | MEDLINE | ID: mdl-36445724
Assembling different shaped particles into ordered microstructures is an open challenge in creating multifunctional particle-based materials and devices. Here, we report the two-dimensional (2D) AC electric field mediated assembly of different shaped colloidal particles into amorphous, liquid crystalline, and crystalline microstructures. Particle shapes investigated include disks, ellipses, squares, and rectangles, which show how systematic variations in anisotropy and corner curvature determine the number and type of resulting microstructures. AC electric fields induce dipolar interactions to control particle positional and orientational order. Microstructural states are determined via particle tracking to compute order parameters, which agree with computer simulations and show how particle packing and dipolar interactions together produce each structure. Results demonstrate how choice of particle shape and field conditions enable kinetically viable routes to assemble nematic, tetratic, and smectic liquid crystal structures as well as crystals with stretched 4- and 6-fold symmetry. Results show it is possible to assemble all corresponding hard particle phases, but also show how dipolar interactions influence and produce additional microstructures. Our findings provide design rules for the assembly of diverse microstructures of different shaped particles in AC electric fields, which could enable scalable and reconfigurable particle-based materials, displays, and printing technologies.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Soft Matter Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Soft Matter Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido