The Use of Campenot Trichambers for the Study of Peripheral Neuronal Growth and Survival in Presence of Thrombotic Factors and Serpins.
Methods Mol Biol
; 2597: 89-104, 2023.
Article
en En
| MEDLINE
| ID: mdl-36374416
The mechanisms underlying nervous system injury, such as spinal cord injury (SCI), traumatic brain injury (TBI), and peripheral nerve injury are complex and not well understood. Following acute tissue damage and cell death, inflammatory processes cause ongoing damage. Many factors regulate this inflammation, including factors that modulate chemokine expression. Serine proteases, including those of the thrombotic and thrombolytic pathways (e.g., thrombin, tPA, uPA) are upregulated during nervous system damage and can modulate the release and bioavailability of many chemokines. Virus-derived immunomodulators, such as Serp-1, a serine protease inhibitor (serpin), have protective effects by reducing inflammation and tissue damage. However, the precise mechanisms of Serp-1 neuroprotection are still being studied. Compartmentalized in vitro neuron culture systems, such as the Campenot trichamber, are useful for such mechanistic studies. This chapter provides a protocol for assembling and culturing rodent embryonic superior cervical ganglion (SCG) and dorsal root ganglion (DRG) neurons in Campenot trichambers, as well as instructive examples of the types of experiments enabled by these methods.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Serpinas
Límite:
Humans
Idioma:
En
Revista:
Methods Mol Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos