Your browser doesn't support javascript.
loading
Tissue-Mimetic Supramolecular Polymer Networks for Bioelectronics.
O'Neill, Stephen J K; Huang, Zehuan; Ahmed, Mohammed H; Boys, Alexander J; Velasco-Bosom, Santiago; Li, Jiaxuan; Owens, Róisín M; McCune, Jade A; Malliaras, George G; Scherman, Oren A.
Afiliación
  • O'Neill SJK; Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
  • Huang Z; Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
  • Ahmed MH; Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
  • Boys AJ; Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, CB3 0FA, UK.
  • Velasco-Bosom S; Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
  • Li J; Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
  • Owens RM; Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, CB3 0FA, UK.
  • McCune JA; Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
  • Malliaras GG; Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
  • Scherman OA; Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
Adv Mater ; 35(1): e2207634, 2023 Jan.
Article en En | MEDLINE | ID: mdl-36314408
Addressing the mechanical mismatch between biological tissue and traditional electronic materials remains a major challenge in bioelectronics. While rigidity of such materials limits biocompatibility, supramolecular polymer networks can harmoniously interface with biological tissues as they are soft, wet, and stretchable. Here, an electrically conductive supramolecular polymer network that simultaneously exhibits both electronic and ionic conductivity while maintaining tissue-mimetic mechanical properties, providing an ideal electronic interface with the human body, is introduced. Rational design of an ultrahigh affinity host-guest ternary complex led to binding affinities (>1013  M-2 ) of over an order of magnitude greater than previous reports. Embedding these complexes as dynamic cross-links, coupled with in situ synthesis of a conducting polymer, resulted in electrically conductive supramolecular polymer networks with tissue-mimetic Young's moduli (<5 kPa), high stretchability (>500%), rapid self-recovery and high water content (>84%). Achieving such properties enabled fabrication of intrinsically-stretchable stand-alone bioelectrodes, capable of accurately monitoring electromyography signals, free from any rigid materials.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polímeros / Electrónica Límite: Humans Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polímeros / Electrónica Límite: Humans Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article Pais de publicación: Alemania