Your browser doesn't support javascript.
loading
Shared biophysical mechanisms determine early biofilm architecture development across different bacterial species.
Jeckel, Hannah; Díaz-Pascual, Francisco; Skinner, Dominic J; Song, Boya; Jiménez-Siebert, Eva; Strenger, Kerstin; Jelli, Eric; Vaidya, Sanika; Dunkel, Jörn; Drescher, Knut.
Afiliación
  • Jeckel H; Biozentrum, University of Basel, Basel, Switzerland.
  • Díaz-Pascual F; Department of Physics, Philipps-Universität Marburg, Marburg, Germany.
  • Skinner DJ; Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
  • Song B; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
  • Jiménez-Siebert E; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
  • Strenger K; Biozentrum, University of Basel, Basel, Switzerland.
  • Jelli E; Biozentrum, University of Basel, Basel, Switzerland.
  • Vaidya S; Max Planck Institute for Neurobiology of Behavior, Bonn, Germany.
  • Dunkel J; Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
  • Drescher K; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
PLoS Biol ; 20(10): e3001846, 2022 10.
Article en En | MEDLINE | ID: mdl-36288405
Bacterial biofilms are among the most abundant multicellular structures on Earth and play essential roles in a wide range of ecological, medical, and industrial processes. However, general principles that govern the emergence of biofilm architecture across different species remain unknown. Here, we combine experiments, simulations, and statistical analysis to identify shared biophysical mechanisms that determine early biofilm architecture development at the single-cell level, for the species Vibrio cholerae, Escherichia coli, Salmonella enterica, and Pseudomonas aeruginosa grown as microcolonies in flow chambers. Our data-driven analysis reveals that despite the many molecular differences between these species, the biofilm architecture differences can be described by only 2 control parameters: cellular aspect ratio and cell density. Further experiments using single-species mutants for which the cell aspect ratio and the cell density are systematically varied, and mechanistic simulations show that tuning these 2 control parameters reproduces biofilm architectures of different species. Altogether, our results show that biofilm microcolony architecture is determined by mechanical cell-cell interactions, which are conserved across different species.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vibrio cholerae / Biopelículas Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vibrio cholerae / Biopelículas Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Estados Unidos