Phosphatase-independent role of phosphatase of regenerating liver in cancer progression.
Cancer Sci
; 114(1): 25-33, 2023 Jan.
Article
en En
| MEDLINE
| ID: mdl-36285487
Phosphatase of regenerating liver (PRL) is a family of protein tyrosine phosphatases (PTPs) that are anchored to the plasma membrane by prenylation. They are frequently overexpressed in various types of malignant cancers and their roles in cancer progression have received considerable attention. Mutational analyses of PRLs have shown that their intrinsic phosphatase activity is dispensable for tumor formation induced by PRL overexpression in a lung metastasis model using melanoma cells. Instead, PRLs directly bind to cyclin M (CNNM) Mg2+ exporters in the plasma membrane and potently inhibit their Mg2+ export activity, resulting in an increase in intracellular Mg2+ levels. Experiments using mammalian culture cells, mice, and C. elegans have collectively revealed that dysregulation of Mg2+ levels severely affects ATP and reactive oxygen species (ROS) levels as well as the function of Ca2+ -permeable channels. Moreover, PRL overexpression altered the optimal pH for cell proliferation from normal 7.5 to acidic 6.5, which is typically observed in malignant tumors. Here, we review the phosphatase-independent biological functions of PRLs, focusing on their interactions with CNNM Mg2+ exporters in cancer progression.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Caenorhabditis elegans
/
Neoplasias Pulmonares
Límite:
Animals
Idioma:
En
Revista:
Cancer Sci
Año:
2023
Tipo del documento:
Article
País de afiliación:
Japón
Pais de publicación:
Reino Unido