Your browser doesn't support javascript.
loading
Learning deep representations of enzyme thermal adaptation.
Li, Gang; Buric, Filip; Zrimec, Jan; Viknander, Sandra; Nielsen, Jens; Zelezniak, Aleksej; Engqvist, Martin K M.
Afiliación
  • Li G; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
  • Buric F; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
  • Zrimec J; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
  • Viknander S; Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.
  • Nielsen J; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
  • Zelezniak A; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
  • Engqvist MKM; BioInnovation Institute, Copenhagen N, Denmark.
Protein Sci ; 31(12): e4480, 2022 12.
Article en En | MEDLINE | ID: mdl-36261883
Temperature is a fundamental environmental factor that shapes the evolution of organisms. Learning thermal determinants of protein sequences in evolution thus has profound significance for basic biology, drug discovery, and protein engineering. Here, we use a data set of over 3 million BRENDA enzymes labeled with optimal growth temperatures (OGTs) of their source organisms to train a deep neural network model (DeepET). The protein-temperature representations learned by DeepET provide a temperature-related statistical summary of protein sequences and capture structural properties that affect thermal stability. For prediction of enzyme optimal catalytic temperatures and protein melting temperatures via a transfer learning approach, our DeepET model outperforms classical regression models trained on rationally designed features and other deep-learning-based representations. DeepET thus holds promise for understanding enzyme thermal adaptation and guiding the engineering of thermostable enzymes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ingeniería de Proteínas / Proteínas Tipo de estudio: Prognostic_studies Idioma: En Revista: Protein Sci Asunto de la revista: BIOQUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ingeniería de Proteínas / Proteínas Tipo de estudio: Prognostic_studies Idioma: En Revista: Protein Sci Asunto de la revista: BIOQUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Estados Unidos