Your browser doesn't support javascript.
loading
Inhibited KdpFABC transitions into an E1 off-cycle state.
Silberberg, Jakob M; Stock, Charlott; Hielkema, Lisa; Corey, Robin A; Rheinberger, Jan; Wunnicke, Dorith; Dubach, Victor R A; Stansfeld, Phillip J; Hänelt, Inga; Paulino, Cristina.
Afiliación
  • Silberberg JM; Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.
  • Stock C; Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.
  • Hielkema L; Department of Structural Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
  • Corey RA; Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
  • Rheinberger J; Department of Structural Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
  • Wunnicke D; Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.
  • Dubach VRA; Department of Structural Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
  • Stansfeld PJ; School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, United Kingdom.
  • Hänelt I; Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.
  • Paulino C; Department of Structural Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
Elife ; 112022 Oct 18.
Article en En | MEDLINE | ID: mdl-36255052
KdpFABC is a high-affinity prokaryotic K+ uptake system that forms a functional chimera between a channel-like subunit (KdpA) and a P-type ATPase (KdpB). At high K+ levels, KdpFABC needs to be inhibited to prevent excessive K+ accumulation to the point of toxicity. This is achieved by a phosphorylation of the serine residue in the TGES162 motif in the A domain of the pump subunit KdpB (KdpBS162-P). Here, we explore the structural basis of inhibition by KdpBS162 phosphorylation by determining the conformational landscape of KdpFABC under inhibiting and non-inhibiting conditions. Under turnover conditions, we identified a new inhibited KdpFABC state that we termed E1P tight, which is not part of the canonical Post-Albers transport cycle of P-type ATPases. It likely represents the biochemically described stalled E1P state adopted by KdpFABC upon KdpBS162 phosphorylation. The E1P tight state exhibits a compact fold of the three cytoplasmic domains and is likely adopted when the transition from high-energy E1P states to E2P states is unsuccessful. This study represents a structural characterization of a biologically relevant off-cycle state in the P-type ATPase family and supports the emerging discussion of P-type ATPase regulation by such states.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Escherichia coli / Proteínas de Transporte de Catión / ATPasas Tipo P Idioma: En Revista: Elife Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Escherichia coli / Proteínas de Transporte de Catión / ATPasas Tipo P Idioma: En Revista: Elife Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido