Your browser doesn't support javascript.
loading
Is low-cost motion capture with artificial intelligence applicable for human working posture risk assessment during manual material handling? A pilot study.
Zhang, Renjie; Niu, Jianwei; Ran, Linghua.
Afiliación
  • Zhang R; School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China.
  • Niu J; School of Mechanical Engineering and Automation, Beihang University, Beijing, China.
  • Ran L; School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China.
Work ; 74(1): 283-293, 2023.
Article en En | MEDLINE | ID: mdl-36245349
BACKGROUND: Assessing working posture risks is important for occupational safety and health. However, low-cost assessment techniques for human motion injuries in the logistics delivery industry have rarely been reported. OBJECTIVE: To propose a novel approach for posture risk assessment using low-cost motion capture with artificial intelligence. METHODS: A Kinect was adopted to obtain red-green-blue (RGB) and depth images of the subject with 24 postures, and the human joints were extracted using artificial intelligence. The images were registered to obtain the actual three-dimensional (3D) human joint angle. RESULTS: The root mean square error (RMSE) significantly decreased. Finally, two common methods for evaluating human working posture injuries-the Rapid Upper Limb Assessment and Ovako Working Posture Analysis System-were investigated. CONCLUSIONS: The outputs of the proposed method are consistent with those of the commercial ergonomic evaluation software.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Enfermedades Profesionales Tipo de estudio: Etiology_studies / Health_economic_evaluation / Risk_factors_studies Límite: Humans Idioma: En Revista: Work Asunto de la revista: MEDICINA OCUPACIONAL Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Enfermedades Profesionales Tipo de estudio: Etiology_studies / Health_economic_evaluation / Risk_factors_studies Límite: Humans Idioma: En Revista: Work Asunto de la revista: MEDICINA OCUPACIONAL Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos