Your browser doesn't support javascript.
loading
Digital phenotyping by wearable-driven artificial intelligence in older adults and people with Parkinson's disease: Protocol of the mixed method, cyclic ActiveAgeing study.
Torrado, Juan C; Husebo, Bettina S; Allore, Heather G; Erdal, Ane; Fæø, Stein E; Reithe, Haakon; Førsund, Elise; Tzoulis, Charalampos; Patrascu, Monica.
Afiliación
  • Torrado JC; Faculty of Medicine, Department of Global Public Health and Primary Care, Centre for Elderly and Nursing Home Medicine (SEFAS), University of Bergen, Bergen, Norway.
  • Husebo BS; Faculty of Medicine, Department of Global Public Health and Primary Care, Centre for Elderly and Nursing Home Medicine (SEFAS), University of Bergen, Bergen, Norway.
  • Allore HG; Department of Nursing Home Medicine, Municipality of Bergen, Bergen, Norway.
  • Erdal A; Yale School of Medicine and Yale School of Public Health, New Haven, CT, United States of America.
  • Fæø SE; Faculty of Medicine, Department of Global Public Health and Primary Care, Centre for Elderly and Nursing Home Medicine (SEFAS), University of Bergen, Bergen, Norway.
  • Reithe H; Faculty of Health Studies, Department of Nursing, VID Specialized University, Bergen, Norway.
  • Førsund E; Faculty of Medicine, Department of Global Public Health and Primary Care, Centre for Elderly and Nursing Home Medicine (SEFAS), University of Bergen, Bergen, Norway.
  • Tzoulis C; Faculty of Medicine, Department of Global Public Health and Primary Care, Centre for Elderly and Nursing Home Medicine (SEFAS), University of Bergen, Bergen, Norway.
  • Patrascu M; Department of Neurology, Neuro-SysMed Center, Haukeland University Hospital, Bergen, Norway.
PLoS One ; 17(10): e0275747, 2022.
Article en En | MEDLINE | ID: mdl-36240173
BACKGROUND: Active ageing is described as the process of optimizing health, empowerment, and security to enhance the quality of life in the rapidly growing population of older adults. Meanwhile, multimorbidity and neurological disorders, such as Parkinson's disease (PD), lead to global public health and resource limitations. We introduce a novel user-centered paradigm of ageing based on wearable-driven artificial intelligence (AI) that may harness the autonomy and independence that accompany functional limitation or disability, and possibly elevate life expectancy in older adults and people with PD. METHODS: ActiveAgeing is a 4-year, multicentre, mixed method, cyclic study that combines digital phenotyping via commercial devices (Empatica E4, Fitbit Sense, and Oura Ring) with traditional evaluation (clinical assessment scales, in-depth interviews, and clinical consultations) and includes four types of participants: (1) people with PD and (2) their informal caregiver; (3) healthy older adults from the Helgetun living environment in Norway, and (4) people on the Helgetun waiting list. For the first study, each group will be represented by N = 15 participants to test the data acquisition and to determine the sample size for the second study. To suggest lifestyle changes, modules for human expert-based advice, machine-generated advice, and self-generated advice from accessible data visualization will be designed. Quantitative analysis of physiological data will rely on digital signal processing (DSP) and AI techniques. The clinical assessment scales are the Unified Parkinson's Disease Rating Scale (UPDRS), Montreal Cognitive Assessment (MoCA), Geriatric Depression Scale (GDS), Geriatric Anxiety Inventory (GAI), Apathy Evaluation Scale (AES), and the REM Sleep Behaviour Disorder Screening Questionnaire (RBDSQ). A qualitative inquiry will be carried out with individual and focus group interviews and analysed using a hermeneutic approach including narrative and thematic analysis techniques. DISCUSSION: We hypothesise that digital phenotyping is feasible to explore the ageing process from clinical and lifestyle perspectives including older adults and people with PD. Data is used for clinical decision-making by symptom tracking, predicting symptom evolution, and discovering new outcome measures for clinical trials.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Trastorno de la Conducta del Sueño REM / Dispositivos Electrónicos Vestibles Tipo de estudio: Prognostic_studies / Qualitative_research Aspecto: Patient_preference Límite: Aged / Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2022 Tipo del documento: Article País de afiliación: Noruega Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Trastorno de la Conducta del Sueño REM / Dispositivos Electrónicos Vestibles Tipo de estudio: Prognostic_studies / Qualitative_research Aspecto: Patient_preference Límite: Aged / Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2022 Tipo del documento: Article País de afiliación: Noruega Pais de publicación: Estados Unidos