Ultrasensitive colorimetric detection of fluoride and arsenate in water and mammalian cells using recyclable metal oxacalixarene probe: a lateral flow assay.
Sci Rep
; 12(1): 17119, 2022 10 12.
Article
en En
| MEDLINE
| ID: mdl-36224315
Globally 3 billion people are consuming water with moderately high concentrations of fluoride and arsenic. The development of a simple point of care (PoC) device or home device for the detection of fluoride/arsenic ensures safety before consuming water. Till date, lateral flow assay (LFA) based PoC devices can detect nucleic acids, viruses and diseases. An aluminium complex of rhodamine B functionalized oxacalix[4]arene (L) was designed to execute the LFA-based PoC device. Initially, Al3+ and Fe3+ ions were involved in complexation with the rhodamine B functionalized oxacalix[4]arene (L), resulting C1 (L-Al3+) and C2 (L-Fe3+) complexes respectively. The receptor L, as well as the probes (C1, C2), were characterized thoroughly using mass spectroscopy, FTIR, NMR, and EA. C1 and C2 were further utilized as recyclable probes for the detection of aqueous fluoride (21 ppb) and arsenate (1.92 ppb) respectively. The computational calculation indicates that upon complexation, the spirolactam ring opening at the rhodamine B site leads to optoelectronic changes. The consistency of LFA-based portable sensing device has been tested with water samples, synthetic fluoride standards and dental care products like toothpaste and mouthwash with concentrations ≥ 3 ppm. Moreover, fixed cell imaging experiments were performed to ascertain the in-vitro sensing phenomena.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Arsénico
/
Ácidos Nucleicos
Tipo de estudio:
Diagnostic_studies
Límite:
Humans
Idioma:
En
Revista:
Sci Rep
Año:
2022
Tipo del documento:
Article
País de afiliación:
India
Pais de publicación:
Reino Unido