Your browser doesn't support javascript.
loading
Characteristics of NtCCD1-3 from tobacco, and protein engineering of the CCD1 to enhance ß -ionone production in yeast.
Gong, Xiaowei; Li, Fan; Liang, Yupeng; Han, Xiulin; Wen, Mengliang.
Afiliación
  • Gong X; National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, China.
  • Li F; R&D Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China.
  • Liang Y; National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, China.
  • Han X; National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, China.
  • Wen M; National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, China.
Front Microbiol ; 13: 1011297, 2022.
Article en En | MEDLINE | ID: mdl-36212872
Biosynthesis of ß-ionone by microbial cell factories has become a promising way to obtain natural ß-ionone. The catalytic activity of carotenoid cleavage dioxygenase 1 (CCD1) in cleavage of ß-carotene to ß-ionone severely limits its biosynthesis. In this study, NtCCD1-3 from Nicotiana tabacum with high ability to cleave ß-carotene was screened. Multiple strategies for improving the ß-ionone yield in Saccharomyces cerevisiae were performed. The results showed that NtCCD1-3 could cleave a variety of caroteniods at the 9,10 (9',10') double bonds and lycopene at the 5,6 (5',6') positions. The insertion site delta for NtCCD1-3 gene was more suitable for enhancing the yield of ß-ionone, showing 19.1-fold increase compared with the rox1 site. More importantly, mutant K38A of NtCCD1-3 in membrane-bonding domains could greatly promote ß-ionone production by more than 3-fold. We also found that overexpression of the NADH kinase Pos5 could improve ß-ionone yield up to 1.5 times. These results may provide valuable references for biosynthesis of ß-ionone.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Microbiol Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Microbiol Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza