Your browser doesn't support javascript.
loading
Wireless Human-Machine Interface Based on Artificial Bionic Skin with Damage Reconfiguration and Multisensing Capabilities.
Gong, Yanting; Zhang, Yi-Zhou; Fang, Shiqiang; Sun, Yadong; Niu, Jian; Lai, Wen-Yong.
Afiliación
  • Gong Y; State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing210023, China.
  • Zhang YZ; State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing210023, China.
  • Fang S; Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing210044, China.
  • Sun Y; State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing210023, China.
  • Niu J; State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing210023, China.
  • Lai WY; State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing210023, China.
ACS Appl Mater Interfaces ; 14(41): 47300-47309, 2022 Oct 19.
Article en En | MEDLINE | ID: mdl-36202397
Human-machine interfaces (HMIs) enable users to interact with machines, thus playing a significant role in artificial intelligence, virtual reality, and the metaverse. Conventional HMIs are based on bulky and rigid electronic devices, seriously limiting their ductility, damage reconfiguration, and multifunctionality. In terms of replacing conventional HMIs, artificial bionic skins with good ductility, self-reparation, and multisensory ability are promising candidates. Still, they in their present form require innovations in mechanical and sensory properties, especially damage recovery and environmental stability, which seriously affect the service life and result in tons of electric waste. Herein, we present a new type of artificial bionic skin with excellent mechanical performance (>13,000% strain), high environmental stability (-80 to 80 °C), and multiple sensory properties toward strain, stress, temperature, solvent, and bioelectricity. Besides, this new type of artificial bionic skin also exhibits effective reconfiguration ability after damage and recyclability. The as-prepared artificial bionic skin was used as an interactive HMI to collect and distinguish the different sensory stimuli. The electronics assembled by HMI with artificial bionic skin can adhere compliantly on the human body for wireless motion capturing and sensing via Bluetooth, Wi-Fi, and the Internet. With simple programming, complex human motions can be mimicked in real-time by robots.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biónica / Piel Artificial Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biónica / Piel Artificial Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos