Your browser doesn't support javascript.
loading
Graphene and Liquid Metal Integrated Multifunctional Wearable Platform for Monitoring Motion and Human-Machine Interfacing.
Babatain, Wedyan; Buttner, Ulrich; El-Atab, Nazek; Hussain, Muhammad Mustafa.
Afiliación
  • Babatain W; Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia.
  • Buttner U; Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia.
  • El-Atab N; Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia.
  • Hussain MM; Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia.
ACS Nano ; 16(12): 20305-20317, 2022 12 27.
Article en En | MEDLINE | ID: mdl-36201180
Motion sensors are an essential component of many electronic systems. However, the development of inertial motion sensors based on fatigue-free soft proof mass has not been explored extensively in the field of soft electronics. Nontoxic gallium-based liquid metals are an emerging class of material that exhibit attractive electromechanical properties, making them excellent proof mass materials for inertial sensors. Here, we propose and demonstrate a fully soft laser-induced graphene (LIG) and liquid metal-based inertial sensor integrated with temperature, humidity, and breathing sensors. The inertial sensor design confines a graphene-coated liquid metal droplet inside a fluidic channel, rolling over LIG resistive electrode. The proposed sensor architecture and material realize a highly mobile proof mass and a vibrational space for its oscillation. The inertial sensor exhibits a high sensitivity of 6.52% m-1 s2 and excellent repeatability (over 12 500 cycles). The platform is fabricated using a scalable, rapid laser writing technique and integrated with a programmable system on a chip (PSoC) to function as a stand-alone system for real-time wireless monitoring of movement patterns and the control of a robotic arm. The developed printed inertial platform is an excellent candidate for the next-generation of wearables motion tracking platforms and soft human-machine interfaces.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dispositivos Electrónicos Vestibles / Galio / Grafito Límite: Humans Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Arabia Saudita Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dispositivos Electrónicos Vestibles / Galio / Grafito Límite: Humans Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Arabia Saudita Pais de publicación: Estados Unidos